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Abstract

A finite sample comparison is carried out for three recent nonparametric methodologies in estimating the mono-
tone regression function F and its inverse F−1. The methods are (1) the inverse kernel method DNP (Dette et al.
(2005), Dette and Scheder (2010)), (2) the monotone spline (Kong and Eubank (2006)) and (3) the data adaptive
method NAM (Bhattacharya and Lin (2010), (2011)), with roots in isotonic regression (Ayer et al. (1955), Bhat-
tacharya and Kong (2007)). Comparative studies are carried out mainly in terms of length of the confidence interval
in this article. Let there be m distinct values of the independent variable x among N observations y. The results show
that if m is relatively small compared to N then generally the NAM performs best, while the DNP outperforms the
other methods when m is O(N) unless there is a substantial clustering of the values of the independent variable x.
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1 Introduction
Given a regression model y = F (x) + ε with F (x) as the regression function and ε some independent error, it is often
of interest in estimating F (x) under some shape constraint such as the monotonicity constraint. For example, it is very
reasonable to assume the biometric age-height charts to be monotonic in age over an appropriate range; econometric
demand functions to be monotonic in price. Among other important examples are the estimation of the dose-response
curves in bioassay and environmental studies which will be the main applications of the methodologies compared in
our article. By constraining an estimate to be monotone one can avoid obtaining implausible estimates and produce
estimates that are consistent with the prior knowledge and the biological background. There is a large literature in
estimating the monotone does-response curve and its inverse using parametric models such as logistic models and
probit models. However, it is in general hard to justify such functional forms and parametric modeling often leads
to inconsistent estimates due to model misspecification. Thus a few nonparametric methodologies have been recently
proposed. Three of the main nonparametric methods are (1) the inverse kernel method DNP (Dette et al. (2005), Dette
and Scheder (2010)), (2) the monotone spline (Kong and Eubank (2006)) and (3) the data adaptive method NAM
(Bhattacharya and Lin (2010), (2011)), with roots in isotonic regression (Ayer et al. (1955), Bhattacharya and Kong
(2007)). These methods can be in general classified into three classes, methods that are kernel based, methods that
exploit spline basis and methods that are based on isotonic regression estimates. Most of these methods bear optimal
asymptotic properties. This article summarizes some results of an extensive finite sample comparison among these
methods carried out in Bhattacharya and Lin (2013).

The article is organized as follows. Section 2 gives a brief description of the three nonparametric methods that are
compared. Section 3 summarizes some of the results of the finite sample comparison in terms of simulated data.
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2 Nonparametric methods
Consider the estimation of a monotone increasing regression function F on an interval [a, b], F ′ > 0, based on
observations (xj , yj), j = 1, · · · , N, satisfying

yj = F (xj) + εj (j = 1, · · · , N), (1)

where a = x1 ≤ x2 ≤ · · · ≤ xN = b are nonstochastic and εj (j = 1, · · · , N) are independent mean zero random
variables; the distribution of εj may depend on xj . Suppose there are m distinct values of x, say a = z1 < · · · <
zm = b, and ni observations yj for a given x = zi, n1 + · · · + nm = N , m → ∞. In particular, one may allow
m = N . Assume F has a continuous second derivative. In a dose-response study, z1, . . . , zm corresponding to m
distinct dosages.

2.1 An adaptive nonparametric NAM
Given a set of weights wi (i = 1, · · · ,m), in the isotonic regression problem (1) the minimizer of

m∑
i=1

(yi − F (zi))2wi (2)

over the class of all monotone nondecreasing F is given by (Ayer et al. (1955) )

F̃ (zi) = max
s≤i

min
t≥i

∑
s≤q≤t yqwq∑
s≤q≤t wq

. (3)

The estimate of the whole curve F is obtained by linear interpolation in [F̃ (zi)), F̃ (zi+1)], i = 1, · · · ,m − 1. This
also allows one to obtain an estimate F̃−1 of the inverse curve F−1. Consider also the usual estimate F̂ (zi) of F (zi)
as the mean of those observations yj for a given x value zi . That is,

F̂ (zi) = Si/ni (4)

where, Si is the sum of those yj with xj = zi. When the number of dosages m is large, one can divide the set of m
sets (z1, · · · , zm, ) into r adjacent nearly disjoint subgroups of approximately equal size s(n) each, where r and s(n)
will be specified later. They satisfy the approximate equality

m ' rs(n). (5)

For example, Group 1 comprises the z values (z1, zr+1, z2r+1, · · · , z(s(n)−1)r+1), zm), Group 2 is (z1, z2, zr+2, z2r+2, · · · ,
z(s(n)−1)r+2), zm), · · · , Group r is (z1, zr, z2r, · · · , z(s(n)r), zm). Now construct the linearly interpolated PAV esti-
mate F̃t of F as above, but using only the yj’s belonging to the t-th Group of z levels (t = 1, · · · , r). Then define the
NAM estimates of F and F−1 as F̃ = (1/r)

∑
1≤t≤r F̃t and ζ = (1/r)

∑
q≤t≤r(F̃t)

−1, respectively.

2.2 Kernel Based DNP Method
An important kernel-based method in estimating the effective dosage curve is the DNP method (following the termi-
nology in Dette and Scheder (2010)). Let the response to xi be yi (0 or 1). The local linear estimator is obtained first
by finding the solution to the following minimization problem: for a small h > 0, find the minimizer of

min
β1,β2

m∑
i=1

K

(
x− xi
h

)
(yi − β1 − β2(xi − x))2, (6)
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where K(x) is a symmetric density on the real line R with a finite second moment, and h is the bandwidth. The

estimator β̂1(x) of β1 is the estimator ̂̂F (x) of F (x). The p-th quantile EDp = F−1(p) is then estimated as

ÊDp =

∫ 1

0

∫ p

−∞

1

hd
Kd

 ̂̂F (x)− u
hd

 du dx, (7)

where hd is small. Here Kd is a symmetric kernel with the same properties as K (e.g, Kd = K). But h and hd
are not of the same order, as shown below. Note that as hd ↓ 0, ÊDp converges to EDp. To understand this,

observe that
1

hd
Kd

 ̂̂F (x)− u
hd

 du converges to the Dirac measure δF̂ (x)(du) as hd ↓ 0, so that the inner integral

converges to the indicator function 1
[
̂̂
F (x)≤p]

(x). The outer integral of this limit is the Lebesgue measure of the set

{x :
̂̂
F (x) ≤ p} which equals the length of this interval. This method of monotonization of a function ̂̂F is called

monotone or measure-preserving rearrangement in Hardy et al. (1952). With an optimal choice of the bandwidth the
estimate p→ ÊDp of F−1 attains asymptotically optimal error rates.

2.3 Monotone B-Spline Smoothing

Given the regression model (1), the general smoothing spline problem is to find the estimate F̂h of the function F that
minimizes the objective function (over the class of twice differentiable functions)

J =
1

m

m∑
j=1

(yj − F (xj))2wj + h

∫ xm

x1

F ′′(x)2dx, (8)

where wj are positive weights and h is a smoothing parameter which controls the trade off between the smoothness of
the curve and the fidelity to the data.

The existence and characterizations of the solution to (8) without any shape constraint on the regression function
F are derived in Wahba (1990) (Also see Eubank (1999)). When F is assumed to be monotone, an approach by Kong
and Eubank (2007) and Kelly and Rice (1990) with the use of the so-called B-spline basis Bj,4, represents a monotone
F as a linear combination of the basis functions Bj,4, with coefficients βj increasing with j. The existence of such F
as a solution minimizing (8) can be easily shown.

For constructing confidence intervals using monotone spline estimates in quantal bioassay, Kong and Eubank
(2007) proposed a form of parametric Bayesian inference for deriving confidence intervals. Our article constructs
confidence intervals using the nonparametric bootstrap, which may be shown to be valid and which makes the proce-
dure fully nonparametric. The optimal estimate of the smoothing parameter h is given by the GCV (generalized cross
validation) algorithm (See Eubank (1999)).

3 Finite sample comparisons
In this subsection, 95% confidence intervals are constructed for the NAM, DNP, Spline estimates and MLE of the
effective dosages ζp with 1000 samples of data simulated from some important parametric models. For each sample,
NAM, DNP, Spline estimates and MLE of the effective dosage curve are obtained for 11 equidistant response levels in
[0.05,0.85]. For each of the response level p, the lower confidence limits are given by the 2.5 percent quantile of the
1000 estimates and the upper confidence limits are given by the 97.5 percent quantile value of the 1000 estimates for
each method.

The data are simulated from four parametric models which are Logistic model, Probit model, Beta model and
Weibull model for the case m = 5, n = 5, 10, 25 and m = 10, n = 5, 10, 25. The comparisons are mainly carried
out in terms of the length of the confidence interval for each method. The first three rows of the following tables
record the lengths of the confidence intervals for the nonparametric estimates by NAM, DNP and Spline; the fourth
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row records the difference D1 = the length of the CI for DNP − the length of CI for NAM; and the last row records
the difference D2 =the length of the CI for Spline − the length of CI for DNP. For lack of space only the results
for the Weibull model are displayed here, more extensive results may be found in your Bhattacharya and Lin (2013).
Some data examples are also given in Bhattacharya and Lin (2013).

As one can see from the results given in the following tables, for the most part, the NAM method yields the
narrowest confidence intervals when n = 10, 25 for both of the case when m = 5 and m = 10 for for all four models.
When n = 5, it seems that the DNP method works better for most of the cases. The NAM and DNP methods in
general perform better than the monotone Spline method.

At the end of this subsection, some plots of the true confidence intervals for different estimates are given. The
blue line in the middle is the true effective dosage curve, the red line with circles represents the confidence interval
for the NAM estimate, the green line represents the confidence intervals for the MLE and the black line represents
the confidence interval for the DNP estimate. For the graphs where the NAM confidence limits and the Spline (SP)
confidence limits are compared, the blue lines represent the confidence intervals for the Spline estimates.

Figure 1: [Weibull]

Figure 2: [Weibull]
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Table 1: [Weibull (m=5,n=5)] Lengths of Confidence Intervals for DNP, NAM(r=2) and Spline and Their Differences
NAM: 0.1787 0.2262 0.2414 0.2431 0.2598 0.2852 0.2871 0.2804 0.2926 0.3061 0.3232
DNP: 0.1375 0.2155 0.2508 0.2422 0.2522 0.2621 0.2702 0.2768 0.2899 0.3046 0.3127
Spline 0.2642 0.3008 0.3093 0.3624 0.3863 0.3905 0.3552 0.3202 0.3643 0.6655 0.7029
D1: -0.0412 -0.0107 0.0093 -0.0009 -0.0076 -0.0230 -0.0168 -0.0036 -0.0028 -0.0015 -0.0105
D2: 0.1267 0.0853 0.0585 0.1202 0.1341 0.1284 0.0849 0.0434 0.0744 0.0891 0.0925

Table 2: [Weibull (m=5,n=10)] Lengths of Confidence Intervals for DNP, NAM(r=2) and Spline and Their Differences
NAM: 0.1123 0.1711 0.1883 0.1838 0.1848 0.2028 0.2022 0.1991 0.2246 0.2155 0.2132
DNP: 0.1238 0.1763 0.1854 0.2015 0.2019 0.2102 0.2163 0.2218 0.2233 0.2380 0.2506
Spline: 0.1238 0.1763 0.1854 0.2015 0.2019 0.2102 0.2163 0.2218 0.2233 0.2380 0.2506
D1: 0.0116 0.0052 -0.0029 0.0178 0.0171 0.0074 0.0141 0.0227 -0.0013 0.0225 0.0374
D2: 0.0545 0.0656 0.0853 0.0758 0.0744 0.0580 0.0375 0.0291 0.0336 0.0637 0.0720

Table 3: [Weibull (m=5,n=25)] Lengths of Confidence Intervals for DNP, NAM(r=2) and Spline and Their Differences
NAM: 0.0814 0.1013 0.1120 0.1274 0.1257 0.1246 0.1333 0.1392 0.1414 0.1393 0.1530
DNP: 0.0967 0.1360 0.1449 0.1682 0.1575 0.1471 0.1685 0.1890 0.1714 0.1754 0.1914
Spline 0.1264 0.1646 0.2063 0.2143 0.1739 0.1593 0.1779 0.1853 0.1824 0.1837 0.2117
D1: 0.0153 0.0347 0.0329 0.0408 0.0317 0.0226 0.0352 0.0498 0.0300 0.0361 0.0384
D2: 0.0297 0.0286 0.0613 0.0461 0.0164 0.0121 0.0094 -0.0037 0.0110 0.0083 0.0203

Table 4: [Weibull (m=10,n=5)] Lengths of Confidence Intervals for DNP, NAM(r=3) and Spline and Their Differences
NAM: 0.6268 0.8851 0.9274 0.9700 1.0744 1.1611 1.2431 1.4632 1.5249 1.6640 1.9524
DNP: 0.5311 0.8156 0.9539 0.9713 1.0605 1.1368 1.1874 1.2617 1.3447 1.5111 1.8156
Spline 0.8892 1.2904 1.3509 1.4651 1.5616 1.5528 1.7029 1.7617 1.9285 2.0212 2.6157
D1: -0.0957 -0.0695 0.0264 0.0013 -0.0139 -0.0244 -0.0556 -0.2015 -0.1802 -0.1528 -0.1368
D2: 0.3581 0.4748 0.3970 0.4937 0.5011 0.4160 0.5155 0.5000 0.5838 0.5101 0.8001

Table 5: [Weibull (m=10,n=10)] Lengths of Confidence Intervals for DNP, NAM(r=3) and Spline and Their Differ-
ences

NAM: 0.3905 0.6339 0.7121 0.7498 0.7925 0.8316 0.8952 0.9822 1.0641 1.2010 1.4386
DNP: 0.4510 0.6948 0.7144 0.7759 0.8158 0.8971 0.9377 1.0168 1.1194 1.3422 1.5087
Spline: 0.7749 0.9332 1.0090 1.2055 1.1872 1.1504 1.1786 1.3059 1.3999 1.6432 1.8403
D1: 0.0606 0.0609 0.0023 0.0261 0.0233 0.0655 0.0425 0.0346 0.0553 0.1411 0.0701
D2: 0.3239 0.2384 0.2946 0.4296 0.3714 0.2533 0.2409 0.2891 0.2805 0.3010 0.3317

Table 6: [Weibull (m=10,n=25)] Lengths of Confidence Intervals for DNP, NAM(r=3) and Spline and Their Differ-
ences

NAM: 0.2672 0.3900 0.4080 0.4489 0.4933 0.5273 0.5798 0.6388 0.7249 0.8204 0.9159
DNP: 0.3644 0.4817 0.5750 0.6135 0.6636 0.6875 0.7515 0.8263 0.8802 0.9672 1.1384
Spline: 0.4724 0.6704 0.8248 0.8549 0.7569 0.7691 0.8664 0.9039 1.0354 1.0535 1.2535
D1: 0.0973 0.0917 0.1670 0.1646 0.1703 0.1602 0.1716 0.1874 0.1552 0.1468 0.2225
D2: 0.1080 0.1887 0.2499 0.2415 0.0932 0.0815 0.1150 0.0776 0.1552 0.0862 0.1150
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