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Abstract

Seasonality (or periodicity) and trend are features describing an observed sequence,
and extracting these features is an important issue in many scientific fields. How-
ever, it is not an easy task for existing methods to analyze simultaneously the trend
and dynamics of the seasonality such as time-varying frequency and amplitude, and
the adaptivity of the analysis to such dynamics and robustness to heteroscedas-
tic, dependent errors is not guaranteed. These tasks become even more challeng-
ing when there exist multiple seasonal components. We propose a nonparametric
model to describe the dynamics of multi-component seasonality, and investigate the
recently developed Synchrosqueezing transform (SST) in extracting these features
in the presence of a trend and heteroscedastic, dependent errors. The identifiability
problem of the nonparametric seasonality model is studied, and the adaptivity and
robustness properties of the SST are theoretically justified in both discrete- and
continuous-time settings. Consequently we have a new technique for de-coupling
the trend, seasonality and heteroscedastic, dependent error process in a general
nonparametric setup. The incidence time series of varicella in Taiwan is analyzed.

Keywords: ARMA processes, cycles, periodic functions, synchrosqueezing trans-
form, instantaneous frequency, time-frequency analysis

1. Introduction

Seasonality (or periodicity) is a phenomenon commonly observed in a time series.
For example, incidence of varicella is known to exert seasonality with high peaks
in winters, which lead to high demand for medical resource. Trend is another
phenomenon commonly of interest in time series analysis; for instance, to determine
if a general application of certain vaccine is e↵ective in the society, we may like
to investigate if overall trend of the disease incidence has changed. Seasonality
and trend phenomena are not unique to disease incidence processes. Examples in
astronomy, climatology and econometrics have been extensively discussed in the
literature (Hall et al., 2000; Nott and Dunsmuir, 2002; Rosen et al., 2009; Pollock,
2009; Bickel et al., 2008).
There are abundant modern methods available to accommodate both seasonality
and trend in a time series, for example, seasonal autoregressive integrated moving
average (Brockwell and Davis, 2002). Although they are useful in many fields, many
of the existing models have some limitations when used to analyze historical data.
First, it is hard for the methods to capture the dynamical behavior of the seasonality
such as its diminishment or changes in the period and/or strength. Indeed, the
parametric model assumptions on the seasonality are often too restrictive for real
world data. Another limitation is that the seasonality analysis depends on the
whole time series, rendering the methods sensitive to the length of the time series.
Moreover, there may exist multiple seasonal components, which cannot be handled
by most of the existing methods.
To tackle the above mentioned di�culties faced by existing methods and to under-
stand more accurately about the dynamics of a system, we introduce a phenomeno-
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logical nonparametric model which captures and o↵ers a natural decomposition of
the dynamical seasonal components, the changing trend, and the heteroscedastic,
dependent errors. To isolate the meaningful seasonal components based on noisy ob-
servations coming from the new model, we focus on the Synchrosqueezing transform
(SST) algorithm (Daubechies and Maes, 1996; Daubechies et al., 2010), originally
designed to analyze dynamical seasonality without contamination of noise or cou-
pling with trend. It provides not only adaptive and robust estimators but also an
easy visualization of the dynamical seasonal components. In addition, since the sea-
sonality is modeled nonparametrically and the SST algorithm is local in nature, it
is insensitive to the length of the observed time series, in the sense that the estimate
of a seasonal component does not change much as time goes. Furthermore, since
our model allows multiple seasonal components, it can extract information about
both the high- and low-frequency periodic components.
After the oscillatory components are isolated from the time series, we can extract
the trend and approximate accurately the heteroscedastic, dependent errors using
the residuals obtained by subtracting from the time series the trend and seasonality
estimates. Subsequently we can conduct further investigations on the error process,
which are relevant in many directions including forecasting. A medical example is
provided: incidence time series of varicella extracted from the Taiwan’s National
Health Insurance Research Database published by the National Health Research
Institute of Taiwan.

2. Model and Methodology

Consider the following classes of periodic functions The identifiability theory of
functions in these classes is given in Chen et al. (2013).

Definition 2.1. For fixed 0 < ✏ ⌧ 1 and ✏ ⌧ c1 < c2 < 1, the space Ac1,c2
✏ of

Intrinsic Mode Functions consists of functions f 2 C

1(R)\L

1(R) having the form

f(t) = A(t) cos(2⇡�(t)),

where A : R ! R and � : R ! R satisfy the following conditions for all t 2 R:

A 2 C

1(R) \ L

1(R), inf
t2R

A(t) > c1, sup
t2R

A(t) < c2,

� 2 C

2(R), inf
t2R

�

0(t) > c1, sup
t2R

�

0(t) < c2, |A0(t)|  ✏�

0(t), |�00(t)|  ✏�

0(t).

Definition 2.2. Fix 0 < d < 1. The space Ac1,c2
✏,d of superpositions of IMFs con-

sists of functions f having the form

f(t) =
KX

k=1

fk(t)

for some finite K > 0 and for each k = 1, . . . ,K, fk(t) = Ak(t) cos(2⇡�k(t)) 2
Ac1,c2
✏ such that �k satisfies

�

0
k(t) > �

0
k�1(t) and �

0
k(t)� �

0
k�1(t) � d[�0k(t) + �

0
k�1(t)]. (1)

We call Ak(t) the amplitude modulation, �k(t) the phase function and �

0
k(t) the

instantaneous frequency of the k-th component in f 2 Ac1,c2
✏,d . We then model a

random process Y (t) as below:

Y (t) = f(t) + T (t) + �(t)�(t), (2)
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where the seasonality f(t) =
PK

k=1 Ak(t) cos(2⇡�k(t)) is in Ac1,c2
✏ when K = 1 and

in Ac1,c2
✏,d when K > 1, the trend T (t) is modeled as a C

1 real-valued function, �(t)
is some stationary generalized random process (GRP), and �(t) > 0 so that � 2
C

1 \ L

1 is a real-valued smooth function used to model the heteroscedasticity of
the error term. For example, �(t) can be taken as a continuous-time autoregressive
moving average (CARMA) random process of order (p, q), where p, q � 0. In
practice, we can only access the continuous-time process Y (t) given in model (2) on
discrete sampling time-points n⌧ , where n 2 Z and ⌧ > 0 is the sampling interval.
So, we consider the following discrete-time model

Yn = f(n⌧) + T (n⌧) + �(n⌧)�n, n 2 Z, (3)

where f , T and � are as in model (2), and �n, n 2 Z, is a zero-mean stationary
time series which can be taken as, for example, an ARMA time series.
Denote by S the Schwartz space and let S 0 be its dual (the tempered distribution
space). When g 2 S 0 and h 2 S, g(h) means g acting on h. Here, sometimes we
use the notation g(h) :=

R
ghdt which is consistent with the case when g is an

integrable function. Given a function h 2 S, its Fourier transform is defined as
b
h(⇠) :=

R1
�1 h(t)e�i2⇡⇠tdt. Take  2 S. For k 2 N [ {0}, define the following

abbreviations:

 

(k)
a,b (x) :=

1

a

k+1/2
 

(k)

✓
x� b

a

◆
,  a,b(x) :=  

(0)
a,b(x) and  

(k)
a (x) :=  

(k)
a,0(x),

where  (k) is the k-th derivative of  , a > 0 and b 2 R. The CWT of a given
f(t) 2 S 0 is defined by

Wf (a, b) =

Z 1

�1
f(t) a,b(t)dt, (4)

where a > 0 and b 2 R. Here we follow the convention in the wavelet literature that
 is called the mother wavelet, a means scale and b means time.
The SynchroSqueezing Transform (SST) algorithm, tailored to analyze a clean func-
tion f(t) 2 Ac1,c2

✏,d , is composed of three steps. First, choose the mother wavelet

 2 S so that supp b
 ⇢ [1 ��, 1 +�], where � ⌧ 1, and calculate Wf (a, b), the

CWT of f(t) as given in (4). Second, calculate the function !f (a, b) defined on
R+ ⇥ R, which plays the role of the reassignment rule:

!f (a, b) :=

(
�i@bWf (a,b)
2⇡Wf (a,b)

when |Wf (a, b)| 6= 0;

1 when |Wf (a, b)| = 0.
(5)

By its definition, !f (a, b) contains abundant information about the instantaneous
frequency functions in f . Third, the SST of f(t) is defined by re-assigning the TF
representation Wf (a, b) according to the reassignment rule !f (a, b):

S

�
f (t, ⇠) := lim

↵!0

Z

{(a,t): |Wf (a,t)|��}

h↵(|!f (a, t)� ⇠|)Wf (a, t)a
�3/2da (6)

where (t, ⇠) 2 R ⇥ R+, ↵,� > 0, h↵(t) := 1
↵h(

t
↵ ), h 2 L

1(R), and h↵ ! �

weakly when ↵ ! 0 with � denoting the Dirac delta function. According to
the reassignment rule (5), S

�
f (t, ⇠) will only have dominant values around �

0
k(t)

which allows us an accurate estimate of �0k(t). To reconstruct the k-th component
fk(t) = Ak(t) cos(2⇡�k(t)) in f , its amplitude modulation Ak(t) and phase �k(t), we
resort to the reconstruction formula of CWT and consider the following estimators:

e
f

�,C
k (t) := R�1

 

Z 1+�
�0
k
(t)

1��
�0
k
(t)

Wf (a, t)�|Wf (a,t)|>�(a)a
�3/2da, e

f

�
k (t) := Re ef�,C

k (t), (7)

Proceedings 59th ISI World Statistics Congress, 25-30 August 2013, Hong Kong (Session STS055) p.2176



where R =
R b (⇣)

⇣ d⇣, � is the indicator function, and Re means the real part,

e
Ak(t) := | ef�,C

k (t)|

and an estimator for �k(t) can then be obtained by unwrapping the phase of the

complex-valued signal e
f

�,C
k (t)

� e
Ak(t).

Now, consider that we have discrete-time observations of f 2 Ac1,c2
✏,d , that is, f :=

{f(n⌧)}n2Z and fn = f(n⌧), where ⌧ > 0 is the sampling interval. In this case we
model the discrete-time observations as a delta chain, f⌧ = ⌧

P
i2Z f(t)�n⌧ , where

�n⌧ is the delta measure at n⌧ and plug it into (4). Since  2 S, Wf⌧ (a, b) is well-
defined and equals ⌧

P
m2Z f(m⌧)

1
a1/2 

�
m⌧�b

a

�
. This is simply the discretization

of (4), so for a > 0 and n 2 Z denote

Wf (a, n⌧) := ⌧

X

m2Z
fm

1

a

1/2
 

�
m⌧ � n⌧

a

�
,

@bWf (a, n⌧) := ⌧

X

m2Z
fm

1

a

3/2
 

0�m⌧ � n⌧

a

�
.

(8)

Similarly, we have the discretization of (5) and (6), which are denoted as

!f (a, n⌧) :=

(
�i@bWf (a,n⌧)
2⇡Wf (a,n⌧)

when |Wf (a, n⌧)| 6= 0;

1 when |Wf (a, n⌧)| = 0.

S

�
f (n⌧, ⇠) := lim

↵!0

Z

{(a,n⌧): |Wf (a,n⌧)|��}

h↵(|!f (a, n⌧)� ⇠|)Wf (a, n⌧)a
�3/2da,

(9)

where � > 0 and n 2 Z. Then the estimation of fk, Ak and �k, k = 1, . . . ,K,
follows immediately, for example, for n 2 Z we have

e
f

�,C
k,n := R�1

 

Z 1+�
�0
k
(n⌧)

1��
�0
k
(n⌧)

Wf (a, n⌧)�|Wf (a,n⌧)|>�a
�3/2da, e

f

�
k,n := Re ef�,C

k,n . (10)

The above discussions concern the cases when the observations are not contaminated
with noise and do not contain trend. If we observe Y satisfying model (2), we simply
replace f in (5), (6) and (7) by Y , and we consider the following the trend estimator:

e
T := Y �Re

Z 1+�
c1

1��
c2

WY (a, b)a
�3/2da,

which is a GRP in general. Suppose we have discrete-time observations Y =
{Yn}n2Z from model (3). Then we replace f in (8), (9) and (10) by Y , and then
reconstruct the trend by the following:

e
Tn := Yn �Re

Z 1+�
c1

1��
c2

WY (a, n⌧)a�3/2da, n 2 Z .

We refer to Chen et al. (2013) for the robustness theory and implementation of the
proposed methods.

3. Seasonal Dynamics of Varicella

Varicella is caused by the varicella-zoster virus. It occurs primarily in children and
adolescents and features a seasonal pattern with the peak incidence happening in
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the winter. Beyond the existence of seasonality, the dynamics of the seasonality, in
particular, the e↵ect of the public vaccination program on the seasonal dynamics has
been less studied. As varicella is a highly contagious disease but can be e↵ectively
prevented, by 70%–80%, using varicella vaccines, free varicella vaccination was made
available to certain areas in Taiwan starting from 2003. A nationwide vaccination
program was then launched in Taiwan in 2004. The weekly cumulative incidence
rate of varicella from 1 January 2000 to 31 December 2009 was calculated using
out-patient visit records of an one-million representative cohort dataset of Taiwan’s
National Health Insurance Research Database.

Fig. 1. Varicella data. Upper left: The varicella incidence time series Y (black) and

ef + eT
(green). Lower left: The SST result, where the y-axis is the frequency and the intensity of

the graph is the absolute value of the SST given in (6). Right: From top to bottom are

eT
(red) and Y (black), the estimated seasonality

ef , and the residuals.

Notice from Figure 1 that the seasonality, the dominant curve on the time-frequency
plane, is graphically visible based on the SST analysis. Also, we can tell from e

f

the dynamics of the seasonality. Before the nationwide public vaccination program
was launched in 2004, the seasonal behavior of varicella was stable and evident: it
climbed gradually after September or October, reached the peak level in December
and the next January, and then declined down to the base during June and July.
This finding is compatible with that of previous studies in Hong Kong and Denmark
without public vaccination program (Chan et al., 2011; Metcalf et al., 2009). After
2004, accordant with the increase in the vaccination rate, the winter peak shifted
slightly toward spring between 2004 and 2008 while the period remained the same.
This finding is consistent with the result of vaccination program in the United States
(Seward et al., 2002). More importantly, less oscillatory seasonality is observed after
the launch of public immunization in 2004, which is important and less reported
before. The estimated trend of varicella incidence of is compatible with the finding
in Chang et al. (2011). The obvious drop in the trend starting from 2003 may be
explained by the free varicella vaccination program in 2003, which was subsequently
accelerated by the nationwide public vaccination program commenced in 2004. Both
the sharp decline during 2000-2001 and the increase during 2002 in the trend are less
conclusive by this analysis; instead they may have been simply artifacts caused by
the transition of the coding system. In Taiwan, the whole medical claim system had
undergone a transition from a localized coding scheme (A-code) to the international
standardized coding scheme (International Classification of Disease, ICD-9), which
was not completed until 2002. The gradual decrease in the trend starting from 2005
and the fact that the trend seems to level o↵ starting from 2008 may be interpreted
as the expected impact of the vaccination program. Clearly, the SST analysis
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showed its robustness to the coding bias problem in 2000-2002, when recovering the
trend in 2003-2010.
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