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Abstract

Heterogeneous learning refers to addressing problems with multiple types of het-
erogeneity, e.g., task heterogeneity, view heterogeneity, etc. It finds abundant ap-
plications in cross-lingual document classification, cross-domain sentiment analysis,
web image classification, etc. Traditional approaches handle different types of het-
erogeneity separately via multi-task learning, multi-view learning, etc. More recently,
researchers start to jointly model different types of heterogeneity in order to improve
the learning performance with limited training data. In this paper, we advance state-
of-the-art in heterogeneous learning by jointly modeling task and view relatedness via
nonparametric Bayes method. To be specific, we model task relatedness using normal
penalty with sparse covariances to couple multiple tasks and view relatedness using
matrix Dirichlet process. We also propose NOTAM2 algorithm, which is based on
an efficient Gibbs algorithm. Experimental results demonstrate the effectiveness of
NOTAM2.

1 Introduction

Nowadays, we are facing big data in a variety of areas, such as social media, manufacturing,
traffic analytics, etc. A common challenge in these big data areas is how to handle multiple
types of data heterogeneity. For example, in social media, we may have micro-blogs com-
ing from heterogeneous sources, such as Facebook and Twitter, and each micro-blog may
be characterized by heterogeneous features, such as key words, hashtags, number of re-
tweets, number of Facebook likes, etc; in manufacturing, we may have products from het-
erogeneous manufacturing lines, and each product may be characterized by heterogeneous
environmental variables, such as temperature, pressure, etc; in traffic analytics, we can
collect traffic information from heterogeneous geographic locations (e.g., different states),
and for each location, we may have heterogeneous traffic indicators, such as volume, GPS
positions, etc.

Recent years have seen growing interest in addressing problems with multiple types
of data heterogeneity (Harel and Mannor, 2011; He and Lawrence, 2011; Han et al.,
2012; Ding et al., 2012; Zhang and Huan, 2012). In particular, some problems have been
formulated as multi-task multi-view learning, or M2TV learning (He and Lawrence,
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2011; Zhang and Huan, 2012), i.e., jointly learning in multiple tasks with partially over-
lapping or completely different feature spaces. Compared with traditional multi-task learn-
ing (O’Sullivan and Thrun, 1996; Yu et al., 2005; Chen et al., 2010, 2011; Zhou et al., 2011),
where the feature space is homogeneous across different tasks, M2TV learning is able to
handle heterogeneous feature spaces; compared with traditional multi-view learning (Blum
and Mitchell, 1998; Muslea et al., 2002; Farquhar et al., 2005; Kakade and Foster, 2007;
Christoudias et al., 2008), where the examples come from a homogeneous task, M2TV
learning is able to leverage heterogeneous (related) tasks to improve the learning perfor-
mance in each task.

A key question in M2TV learning is how to model the relatedness among multiple
tasks/views. Whereas existing work usually assumes that all the tasks/views are related,
and mainly focuses on exploring various types of relatedness; in this work, we go one step
further, and study (1) if all the tasks/views are related, and (2) how much they are related
to each other. This is motivated by the fact that in many real applications, it is often not
known a priori if all the tasks/views are equally related or not. In the adversarial cases where
some tasks/views are negatively related to the others, simply applying the existing methods
for M2TV learning may even harm the performance. Although in traditional multi-task
learning, there has already been some work testing the task relatedness (Chen et al., 2010;
Zhou et al., 2011; Chen et al., 2011; Zhang and Yeung, 2012), to the best of our knowledge,
our work is the first to study this problem in the context of M2TV learning.

Motivated by the successful application of Bayesian hierarchical modeling in multi-
task/multi-view learning (Bakker and Hesks, 2003; Archambeau et al., 2011; Han et al.,
2012), we propose a nonparametric Bayes method for M2TV learning, where task relat-
edness is modeled via a normal penalty that decomposes the full covariance of matrix ele-
ments into the Kronecker product, and view relatedness is modeled via a matrix Dirichlet
process. Furthermore, we design the NOTAM2 algorithm, which stands for NOnparameTric
bAyes M2tv learning. It is based on an efficient Gibbs algorithm scalable to relatively high
dimensions.

The rest of the paper is organized as follows. In Section 2, we proposed the nonpara-
metric Bayes method for M2TV learning and conclude the paper in Section 3. Due to the
page limit, we omit the algorithm and experimental results in this paper.

2 Nonparametric Bayes Method for M 2TV Learning

2.1 Notation

Suppose that we have T tasks and V views in total. For the vth view, there are dv features.
For the tth task (t = 1, . . . , T ), there are nt examplesX t = {xt

1, . . . ,x
t
nt} ⊂ R

∑V
v=1 dv

, and
each example xt

s = [(xt1
s )′, . . . , (xtV

s )′]′ with label yt
s (s = 1, . . . , nt), where xtv

s ∈ Rdv

denotes the features from the vth view (v = 1, . . . , V ), ()′ denotes vector transpose, and yt
s

is either discrete for classification problems, or real-valued for regression problems. Notice
that if a certain view is missing, the associated features will all be 0. Therefore, our problem
setting is essentially the same as in He and Lawrence (2011) where some views are shared
by multiple tasks, and some views are task specific. For the sake of clarity, we introduce
an indicator matrix I ∈ {1, 0}T×V×nt to mark which view is missing from which task
of which example, i.e., Itv

s = 0 if the vth view of tth task from sth example is missing
and Itv

s = 1 otherwise. Throughout the paper we use subscripts to denote examples and
superscripts to denote tasks and views.
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2.2 Model Formulation

Our proposed model can be decomposed into multiple view models, where each view gen-
erates a predictor that can be used to make predictions on future data examples. To be
specific, for the tth task (t = 1, . . . , T ), we use a mixture linear regression model for the
estimated output ŷt

s (s = 1, . . . , nt) by averaging the prediction results from all view func-
tions as follows:

ŷt
s =

V∑

v=1

{
(xtv

s )′f tv + εtv
s

}
,

where f tv ∈ Rdv
is the coefficient vector, and εtv

s ∈ R is the observational error. Motivated
by Yu and Chu (2007), we assume that ε = {εtv

s } ∼ N(0,K ⊗ IV ), where K ⊗ IV is the
kernel function of the Gaussian distribution and IV is the V by V identity matrix. Here
K ∈ RT×T models the task relatedness. To be specific, define a task graph as follows: the
graph consists of T nodes with each node representing a single task; let W ∈ RT×T denote
the adjacency matrix of the graph, whose element in the tth row and (t′)th column Btt′ =

1
ntnt′

∑nt

s=1

∑nt′

s′=1 < xt
s,x

t′
s′ >, where t, t′ = 1, . . . , T . For this graph, the Laplacian

∆ = D − B, where D ∈ RT×T is a diagonal matrix, with each diagonal element equal to
the row sum of W . Using ∆, we define K as follows: ∀t, t′ = 1, . . . , T ,

Ktt′ =
[
β(∆ +

1
σ2

I)
]−1

where β is the positive parameter that controls the overall sharpness of the distributions:
large values of β mean that the distribution is more peaked around its mean. For more
flexibility, we let β ∼ Ga(a, b) and be adapted to the data through adjusting the distribution
related parameters, where Ga(a, b) stands for Gamma distribution with shape parameter a
and scale parameter b. σ2 controls the amount of regularization and we choose a proper
prior σ2 ∼ IG(c, d), where IG(c, d) stands for Inverse-Gamma distribution with shape
parameter c and scale parameter d.

We note several important aspects of the proposed Gaussian penalty. First, the task
relatedness matrix K depends on the inverse of the regularized graph Laplacian ∆. There-
fore, the relatedness between two tasks is global in the sense that it depends on all the tasks.
Second, if we also have unlabeled data in addition to the labeled training data, all the un-
labeled data can be used to define the adjacency matrix B (since it does not require label
information), thus making it more reliable.

On the other hand, we model the coefficient vectors f tv (t = 1, . . . , T , v = 1, . . . , V )
through: 


f t1

...
f tV


 ∼ N


 0 ,




Ψ11 Ψ12 · · · Ψ1V

...
...

. . .
...

ΨV 1 ΨV 2 · · · ΨV V




−1

 .

Notice that we define the precision matrix instead of the covariance matrix here, which will
be beneficial for the computation in the Gibbs steps. We extend the matrix DP prior (Dun-
son et al., 2008) to define view-specific covariance function Ψvv′ = Ψv′v. In particular, we
borrow information by incorporating dependence in the prior distributions for the coeffi-
cients {Ψvv′}. We start by assuming for v ≥ v′ ≥ 1,

Ψvv′ ind∼ F vv′ , F ∼ P,
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where F = {Fvv′ , V ≥ v ≥ v′ ≥ 1} is a matrix of random probability measures, and P
is a probability measure on (Ω,F), with Ω being the space of symmetric V × V matrices,
and F being a σ-algebra of subsets of Ω. The (v, v′) element of Ω is a probability measure
on (X v,βv), where βv is a Boreal σ-algebra of subsets of X v.

Our focus is on the specification ofP . Assuming each element inF has a stick-breaking
representation, we let

F vv′ =
∞∑

h=1

{
W vv′

h

∏

l<h

(1−W vv′
l )

}
δΘvv′ , Θvv′ ind∼ G,

where W = {W vv′ , V ≥ v ≥ v′ ≥ 1} is an array of random stick-breaking weights,
and Θ = {Θvv′} is a three dimensional triangular array of random atoms (for simplicity,
we assume that dv = p for v = 1, . . . , V , and if dv < p we fill in 0 values to make
feature lengths equal). The third dimension (p) corresponds to the different predictors of
the features, while the triangular matrix corresponds to different clusters.

Dependency within dimensions of F will be incorporated through dependent stick-
breaking weights and a common parametric prior G. For the stick-breaking component,
because of the symmetry (Ψvv′ = Ψv′v), we let

(1) W vv′
h = γv

hγv′
h , γv

h ∼ beta(1, α), α
ind∼ Ga(1, α0),

so that the probability W vv′
h is decomposed into the product of γv

h and γv′
h . In this way,

we guarantee the symmetric property: W vv′
h = W v′v

h . The definition of γv
h ensures that

the elements of W = {W vv′ , V ≥ v ≥ v′ ≥ 1} sum to one which makes (1) a valid
probability measure. Figure 1 shows the graphical presentation of the proposed model.

Figure 1: Graphical presentation for nonparametric Bayes multi-task multi-view learning
model.

Similarly to Xue et al. (2007), we have the following relationship. For simplicity, here
we assume that V = 4, and V1, . . . , V4 stands for the four different views.

Pr(ΘV1V2 = ΘV1V3) =
1

(α + 1)(α + 2)− 1
,

lim
α→0

Pr(ΘV1V2 = ΘV3V4 |ΘV1V4 = ΘV3V4) =
1

α + 1
.

The element G is a degenerate distribution:

G = πI∞ + (1− π)G0, G0 ∼ Inverse-Wishart(ν, Ψ0).

So when Ψvv′ falls into the I∞ cluster, the corresponding covariance matrix will be I0(values
all 0) and the nonsignificant f tv will be set to 0.
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3 Conclusion

In this paper, we propose a nonparametric Bayesian model for addressing problems with
dual-heterogeneity, i.e., multiple tasks (task heterogeneity) and multiple views (view het-
erogeneity). Compared with state-of-the-art which assumes that the tasks/views are equally
related, our main contribution is making use of normal penalty with sparse inverse covari-
ances and matrix DP prior to learn from the data: (1) if the tasks/views are related; (2) how
much they are related to each other. Furthermore, we design NOTAM2 algorithm based on
an efficient Gibbs algorithm, which constructs predictors for all the tasks leveraging both
the multi-task and multi-view nature. Experimental results on several real data sets show
that NOTAM2 outperforms existing methods in M2TV learning.
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