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Abstract 
 
An engineering analysis requires a realistic quantification of all input information. The 
amount and quality of the available information dictates the uncertainty model and its 
associated quantification concept. For inconsistent information, a distinction between 
probabilistic and non-probabilistic characteristics is beneficial. In this distinction, 
uncertainty refers to probabilistic characteristics and non-probabilistic characteristics 
are summarized as imprecision. When uncertainty and imprecision occur 
simultaneously, the uncertainty model fuzzy randomness appears useful. In a Bayesian 
approach the fuzzy probabilistic model provides the opportunity to take account of 
imprecision in data and in prior expert knowledge. The Bayesian approach ex-tended 
to inconsistent information is demonstrated by means of an example. 
 
Keywords: fuzzy-Bayes, fuzzy random variables, imprecise data, imprecise 
probabilities, uncertainty quantification 
 
 
1. Introduction 

Whenever decision making in engineering is based on results from a numerical 
analysis, it is essential that the available information is reflected properly in these 
results. This requires a realistic modeling of the available information without 
distorting it or ignoring certain aspects. In engineering practice, the information basis 
usually consists of plans, drawings, measurements, observations, experiences, expert 
knowledge, codes and standards, and so on. Hence, it is frequently not certain or 
precise but rather imprecise, diffuse, fluctuating, incomplete, fragmentary, vague, 
ambiguous, dubious, or linguistic. In addition, data and expert assessments may not be 
in full agreement. This type of inconsistent information requires a generalized 
uncertainty model to minimize the risk from modeling errors under uncertainty in 
engineering computations and prognoses. Shortcomings, in this regard, may lead to 
biased computational results with an unrealistic accuracy and may therefore lead to 
wrong decisions with the potential for associated serious consequences. Uncertainty 
modeling has thus already become an engineering task of great importance and 
interest.  

In the present study, fuzzy probability theory (Beer, 2009a) is selected for the 
simultaneous treatment of uncertainty and imprecision. The fuzzy probabilistic model 
provides a high degree of generality and flexibility, as it combines probabilistic 
modeling with fuzzy modeling. It enables to take into account an entire set of 
plausible probabilistic models complying with the underlying information. This is 
mathematically realized with the aid of fuzzy variables for the distribution parameters 
and for the description of the distribution type. The associated fuzzy probability 
distribution functions  X

F x
  represent a bunch of plausible traditional distribution 

functions with fuzzy parameters as bunch parameters; their functional values are fuzzy 
numbers. 

In order to utilize the features and benefits of generalized uncertainty models, 
which include both uncertainty and imprecision, suitable quantification methods are 
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needed to capture the available information in each particular case in the most realistic 
manner. This can be achieved by merging methods of traditional mathematical 
statistics and Bayesian statistics with statistics for imprecise data and set-theoretical 
methods. So far, the combination of Bayesian methods with imprecise information has 
not been investigated extensively. Developments in this direction, summarized with 
the term fuzzy Bayes methods, have been published in (Viertl & Hareter 2004, Viertl 
2008, Viertl 2011). This approach involves averaging elements regarding the 
propagation of the imprecision during the update using the bounds of the imprecision. 
In the present study we pursue an alternative, numerical approach to reflect the 
imprecision of the input information in the predicted distribution using concepts for 
propagation of imprecision in compliance with the fuzzy probabilistic model in (Beer 
2009a). 

2. Bayesian Update with Fuzzy Information  

2.1 Quantification options  
We start from the Bayesian theorem 

 
   

 
X

X x

X

f x g
f x

f x








 



 
       (1) 

and identify four options to develop a fuzzy Bayesian update.  
The first option covers the case where no component of Eq. (1) is affected by 

fuzziness, but where fuzziness is induced by an interval estimation of the posterior 
parameters. The subjective selection of the estimator, the subjective selection of the 
confidence level for interval estimation, and the selection of the type of the interval are 
sources of fuzziness. The parameter estimation can be performed for a variety of 
selections, and the results are merged to a fuzzy parameter   eventually leading to a 
fuzzy random variable X . 

The second option covers the case of an imprecise likelihood function, where 
according to prior information the type of the distribution of X and the parameters other 
than   cannot be specified precisely. The random variable X is then already present as 
a fuzzy random variable X  and enters Eq. (1). This yields, again, a fuzzy random 
variable X after the update. 

The third option covers the case where fuzziness is induced due to imprecision in the 
prior distribution. 

Option four is concerned with the scenario of a Bayesian update with imprecise data 
x . 

The four basic options can be combined with each other to build further 
quantification options in the gaps between the basic options. Herein we focus on the 
latter two options and their combination. 
 
2.2 Imprecise prior distribution 
The likelihood function  Xf x    is known precisely. Only vague information is, 
however, available for the specification of the prior distribution so that only bounding 
functions for  g   can be formulated. This prompts the consideration of the set of 
all plausible prior distributions. The parameters of  g   may therefore be specified 
with the aid of “subjectively assessed intervals” to represent fuzzy sets. The prior 
distribution then appears as fuzzy probability distribution  g    in Eq. (1). The result 
obtained from Eq. (1) is a fuzzy probability density function  X xf x


   as the basis 

to estimate the parameters   of the random variable X. As the parameters of 
 X xf x


   are fuzzy variables, this estimation yields fuzzy values  , which 

eventually lead to a fuzzy random variable X . Fuzzy randomness is induced by the 
assumption of  g   . 
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2.3 Imprecise data  
The distribution parameters of both the likelihood function  Xf x    and the 
prior density function  g   are known precisely. The sample for the Bayesian 
update is, however, comprised of imprecise data and is taken into consideration as a 
fuzzy sample  1 nx ,...,x  . In Eq. (1) the fuzzy sample elements ix  are evaluated with 
the function  Xf x    leading to fuzzy functional values  Xf x

    . This 
yields a fuzzy probability density function  X x

f x

  , again, and hence a fuzzy 

random variable X . Fuzzy randomness is induced via the fuzzy sample. 
 
3. Illustrative Application  

3.1 Problem description  
A sample of size 20 is available for the compressive strength fc of concrete. This sample 
is taken from (Beer 2009b), where it is presented (i) as precise data and (ii) as fuzzy data 
with a spread of 2 N/mm2 and then used for a non-Bayesian fuzzy probabilistic 
quantification. The respective results are used, herein, for the purpose of comparison. 

The compressive strength of concrete fc is modeled as a normal random variable X, 

 2

c X Xf X N ,   
.
      (2) 

Prior distributions are assumed for the distribution parameters X  and X , which 
are then updated based on the data. With    as general notation for uncertain 
distribution parameters and  g   being their joint probability density function, the 
Bayesian estimates for  X  and  X  are obtained as expected values of   based on 
the posterior distribution  X xf x  ,  

   1 2X XE , E           (3) 

We assume that the prior distribution for   is given by the marginal pdf's 
(probability density functions) for 1  and 2 , and that 1  and 2  are statistically 
independent of one another. Two cases will be considered: 

(1) the case “normal”, where  
1 11 N ,    

 
and  

2 22 N ,     , 

(2) the case “uniform”, where  
1 11 U a ,b    and  

2 22 U a ,b  
.
. 

These cases are investigated with the aid of fuzzy variables for the numerical 
description of imprecision. This leads to fuzzy probability distribution functions for 
various random variables involved. The numerical processing of the fuzziness is 
realized with -level optimization as described in (Möller and Beer 2004). 
 
3.2 Imprecise prior distribution  
Let several experts agree upon a most plausible value for the parameters and some 
intervals, which cover the range of their individual opinions. From this information, 
fuzzy triangular numbers can be constructed, 

1 1

2 2

2 2

2 2

26 5 28 5 30 5 1 0 2 0 3 0

3 5 4 5 5 5 0 75 1 0 1 5

  

  

. , . , . N mm . , . , . N mm

. , . , . N mm . , . , . N mm

,

,

 

 

 

 
 

 

 

 
    (4a) 

for the "normal" case as and 

1 1

2 2

2 2

2 2

20 0 27 0 28 0 29 0 30 0 36 0

2 0 3 0 4 0 5 0 6 0 7 0

  

  

a . , . , . N mm b . , . , . N mm

a . , . , . N mm b . , . , . N mm

,

,

 

 




 

 

   (4b) 

for the "uniform" case. 
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For each case, the associated fuzzy probability distribution  g   is then used for 
the Bayesian update. The result is a fuzzy probability density function  X x

f x

  . As 

the parameters of  X x
f x

   are fuzzy variables, Eq. (3) yields fuzzy values X

  
and X

 , which eventually lead to a fuzzy random variable X for the compressive 
strength. Consequently, the 5% quantile is obtained as a fuzzy variable. Figure 3 
illustrates the Bayesian update for the case of a "normal" fuzzy prior distribution and 
precise data. To investigate the effect of the sample size, the quantification of X

  and 

X
 was again carried out for a sample size of n = 7 and n = 20. It can be observed that 

the fuzziness, which is induced solely by the assumption of  g   , is significantly less 
for n = 20. This corresponds well with the standard Bayesian approach, in which the 
influence of the prior distribution decays with increasing sample size. The fuzzy 
parameters X

  and X
  show some interactive dependency. 

 

 
 
Figure 3. Bayesian update for "normal" fuzzy prior; interaction between fuzzy 
distribution parameters; resulting fuzzy quantiles. 

 
Figure 4 depicts the fuzzy 
parameters X

  and X
  and 

their interaction for the case of a 
"uniform" fuzzy prior. Again, the 
fuzziness decays visibly with 
increasing sample size. A 
significant difference between the 
case of a "normal" prior 
distribution and a "uniform" prior 
distribution can be observed in 

Figure 4. Case "uniform" fuzzy prior. the shape of the membership
 functions for X

  and X
 . The 

concave shape of the membership functions in the case of a “normal” prior distribution 
implies that a small reduction of input imprecision in  g    results in a strong 
reduction of imprecision in the estimation results. In contrast to this, the convex shape 
of the membership functions in the case of a “uniform” prior distribution implies that a 
reduction of imprecision in  g    is less effective to reduce imprecision in the 
estimation results. For both cases it can be seen that the exact result is fully covered if 
the interaction is neglected. 
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3.3 Imprecise data  
Suppose that a fuzzy sample with elements ix is available according to (Beer 2009b). 
The Bayesian update then leads to the fuzzy probability density function  X x

f x

  , 

and consequently again to fuzzy values X
  and X

  as the parameters for the fuzzy 
random variable X . The prior distribution is specified precisely with distribution 
parameters according to the middle numbers in Eqs. (4a) and (4b). 

Figure 5 illustrates the Bayesian update with a “normal” prior distribution and the 
imprecise data for n = 7 and n = 20. It can be observed that the fuzziness in the 
estimation results, which is now exclusively induced by the sample elements ix , 
increases with increasing sample size. Although non-intuitive, this again corresponds 
well with the standard Bayesian approach, in which the influence of the now precise 
prior distribution decays with increasing sample size. As the estimation results con- 
verge towards the statistical solution (data only), the imprecision in the estimation 
results as well converges towards the solution from statistics with imprecise data (see 
Beer 2009b). 
 

 
 
Figure 5. Bayesian update for "normal" prior and imprecise data; interaction between 
fuzzy distribution parameters; fuzzy quantiles. 
 

 
 
Figure 6. Comparison of the estimation results from Bayesian update with imprecise 
data with the results from sample statistics with imprecise data. 
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Figure 6 shows that comparison of the estimation results from Bayesian update 
with imprecise data with the results from statistics with imprecise data. It can be 
observed that the use of precise prior information, if available, is significantly 
reducing the imprecision of the results. This is especially the case if only rare and 
imprecise data are available, i.e. in the example for the case of n = 7. The effect 
decays with increasing sample size. The same effects appear in the case “uniform”. 
Ignoring the interaction between the fuzzy parameters X

  and X
  increases 

significantly the imprecision in the quantiles. This effect is less severe for the "uniform" 
prior distribution. 
 
3.4 Imprecise prior distribution and imprecise data 
The two basic options for the Bayesian update with imprecise information as 
presented in Sections 3.2 and 3.3 can be combined. In such combination the effects of 
the imprecision in the prior distribution and of the imprecision in the data on the 
estimation results counterbalance one another. Consequently, the imprecision in the 
estimated fuzzy parameters X

  and X
  does not significantly change with the 

sample size. Whilst for small sample size the effect of the imprecision in the prior 
distribution is dominant, the impact of imprecision in the data is dominant for larger 
sample sizes. 
 
4. Conclusions 
Inconsistent information represents a common problem in engineering practice. This 
information is not appropriate for a plain evaluation by means of traditional statistics. 
A proper evaluation and a suitable numerical description are, however, required to 
obtain realistic results in a structural analysis, which are often the basis for 
engineering decision. To achieve this goal, the model fuzzy randomness is utilized, 
which enables a separate and simultaneous treatment of statistical uncertainty and 
imprecision. Due to the variety of possible forms of available information, a general 
quantification algorithm cannot be formulated. In the case of some subjective 
probabilistic information next to measured data, the quantification can be realized with 
a Bayesian update. If either the data or the prior probabilistic information inherits 
imprecision, the Bayesian update can be extended to fuzzy Bayes methods to quantify 
a fuzzy random variable based on all available information. It has been shown, that the 
Bayesian update with imprecise information retains the attractive properties of the 
standard Bayesian approach. The imprecision of the input information is reflected as 
imprecision in the estimation results without being averaged out. Hence, the predicted 
distribution exhibits both uncertainty and imprecision. 
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