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Abstract

The problem of modeling and analyzing fuzzy data is investigated in a possibilistic con-
text, based on a Bayesian approach. Specially, we focus on the problem of point estimation
when the available data of the underlying statistical model are fuzzy rather than crisp. To
do this, first we extend the concept of likelihood function to fuzzy data. Then, to obtain the
point estimation, we develop a method without considering a loss function and one consider-
ing a loss function based on a possibilistic posterior distribution. A few numerical examples
are presented to explain the applicability of the proposed approach.
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1 Introduction and preliminary concepts

Bayesian inference for parametric statistical models is based on two assumptions:

1) The parameter of interest, 8, of the underlying model f(z|0) is of stochastic nature and
has a probabilistic prior distribution, 7 (@).

2) The available data related to the random variable X are precise.

The first item is the most important point in the Bayesian paradigm. But, considering 6 as a
random variable with a probabilistic prior distribution is a matter of challenge between classical
and Bayesian statisticians. On the other hand, concerning Item 2 above, in many situations,
the available data are vague rather than crisp (see Zimmermann, 2000; and Tsoukias, 2008).

In this study, we propose a possibilistic version of the Bayesian approach, in which the prior
information about 6 is formulated as a possibility distribution rather than a probabilistic one.
In addition, we consider that the data available for the random variable X are presented as
fuzzy sets rather than as crisp numbers. Using this approach, we try to remove the above two
limitations.

It is remarkable that, the Bayesian approach in statistics is fundamentally based on consid-
ering the parameter of interest 6 (related to the statistical model f(z|f)) as a random variable
with a prior probabilistic distribution 7 (#). However, in many problems, we have an imprecise
(not necessarily stochastic) information on 6. In these cases, it is reasonable to consider # as a
possibilistic variable with a vague (fuzzy) prior information. Below, we recall two basic defini-
tions of “Possibility Theory”, which we will need in the present article. The reader is referred
to Dubois (2006) for more details.

Definition 1 A possibility measure II on a measurable space (2, B) is defined to be a function
IT: B—[0,1], that satisfies the following azioms
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i) TI(A) > 0, for all A € B,

ii) (X)) =

iii) (U2, Ai) = sup; I1(A4;), (for every sequence A; € B).
Also, (2, B,11) is said to be a possibility space.

Definition 2 Suppose that (2, B,1I) is a possibility space. The function 7*(-) : @ = [0,1] is a
possibility function related to 11 if it satisfies

II(A) = Poss(A) = 51612 n(z), V A€B.
T

In the special case, w*(z) = II({z}).

Remark 1 The possibility measure and the possibility function are comparable to the probability
measure P(-) and the probability density function, respectively. Note that if f(-) is a probability
density function on (2, B), then we have

:/f@m% vV AcB.
A

This paper is organized as follows: Two new concepts, the possibilistic prior distribution
and possibilistic posterior distribution, are introduced and investigated in Section 2. In Section
3, we study the problem of parameter estimation, in the possibilistic Bayes paradigm, without
considering a loss function. In Section 4, using a loss function, the posterior risk function
is initially defined and then, the problem of parameter estimation is developed based on this
function. A brief conclusion is provided in Section 5.

2 Possibilistic posterior distribution with fuzzy data

In this section, we extend the concept of likelihood function to fuzzy data. Moreover, we
define the possibilistic posterior distribution based on a possibilistic prior distribution, when the
observations of the underlying model are fuzzy. In the following, we assume that (Q,B) is a
measurable space, in which Q is the sample space. Also, (€2, B, P) is a probability space, where
P is a probability measure on (Q, B).

Definition 3 Let (2, B, P) be a probability space. Suppose that X = (X1, Xa, ..., Xp) is a fuzzy-
valued random sample of size n of X, associated with the probability density function (PDF) (or
a probability mass function) f(-0), i.e. a sequence of fuzzy numbers as fuzzy realizations of the
original random variable X. Then, the likelihood function based on such a fuzzy-valued random
sample is defined by

1(6; X) = / /Hxxzaw@m) (1)

where, f(x|0) is the Radon Nikodym derivative of P with respect to v (a o-finite measure) and
X 1s the support of the random variable X.

Remark 2 It should be mentioned that, when the available data are crisp numbers x1, Ta, ..., Tp,
then the above definition reduces to the ordinary definition of the likelihood function, i.e. 1(0;z) =
[Ti=, f(x;|6). Note that the above extension is according to Zadeh’s definition (Zadeh, 1968) for
the probability of fuzzy events.
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Definition 4 Let f(x|0) be a statistical model with the unknown parameter 6 € ©. Suppose that
the information about 0 is formulated as a possibility function 7w*(0). This possibility function
is called the possibilistic prior distribution for 6.

Definition 5 Consider the fuzzy-valued random sample X = (X1, Xo, ..., X)) with the likeli-
hood function [(0; X). Suppose that the parameter 0 has a possibilistic prior distribution 7*(0).
The possibilistic posterior distribution, under T-norm T(.,.), is defined by

(01 X) = — = , (2)

where m(X) = supy {T(l(H;X),W*(H))} is called the marginal function (for obtaining a normal
posterior distribution, i.e., 3 0 s.t. 7 (0] X) = 1).

Remark 3 The above definition is, in some sense, consistent to some definitions for condi-
tional possibility. First, note that the marginal function m(X) 15 analogous to a corresponding
relation for probabilities in probability theory for which the operators sup and T(.,.) are used
instead of summation and product, respectively, (see Equation (33) in Nguyen (1978) and Equa-
tion (6) in Kramosil (1998)). A second item is related to use a T-norm in the numerator in
Equation (2). In this regard, see the discussion in Section 3 in De Baets et al. (1999) and
Sections 3 and 4 in Coletti and Vantaggi (2009).

Example 1 The data in Table 1 (centers of the fuzzy numbers) show the lifetimes (in 1000 km)
of front disk brake pads on a randomly selected set of 40 cars (same model) that were monitored
by a dealer network (see, Lawless, 2003, p. 337). Suppose that the lifetime of the front disk
brake pad has an exponential distribution with the density function
I ¢

f(t|0)zae 0, t >0, 0 >0,
where 0 is the mean lifetime of the front disk brake pad. An expert believes that the value of
the variable @ lies in the interval [40,50] with a possibility of one. Moreover, he/she believes it
is possible that 0 is smaller than 40, but never below 30, and bigger than 50, but never above
60. We use a trapezoidal fuzzy number to model the possibilistic prior distribution based on the
expert opinion as follows (see Figure 1)

9-30 30 <@ <40,

10
" 1 40 < 0 < 50,
mO =Y w-0 50 <9<,
0 otherwise.
A ﬂ.‘(a)
'I -
| |
| |
| |
1 |
| |
! |
of et + + —> @
0 30 40 50 60

Figure 1. The possibilistic prior distribution in Example 1.

In practice, measuring the lifetime of a disk may not yield an exact result. A disk may work
perfectly over a certain period but be braking for some time, and finally be unusable at o certain
time. So, such data may be reported as imprecise quantities. Assume that the lifetimes of front
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disk brake pads are reported as fuzzy numbers in Table 1. In fact, imprecision is formulated by
fuzzy numbers X; = (z;, 8;)r, with s; = 0.05z;, i =1,2,...,40, as follows

Xi(t) =

= 1— 55 g <t<uwmi+s,
0 otherwise.

Table 1: Lifetimes of front disk brake pads of cars in Example 1

No. X; No. X; No. X; No. X;
1 (86.2,4.3)r 11 (36.7,1.8)r 21 (61.5,3.1)p 31 (45.9,2.3)r
2 (38.4,1.9)r 12 (22.6,1.1)g 22 (42.7,2.1)r 32 (50.6,2.5)r
3 (45.5,2.3)r 13 (81.7,4.1)p 23 (46.9,2.3)r 33 (59.0,3.0)r
4 (22.7,1.1)r 14 (102.5,5.1)p 24 (33.9,1.M)r 34 (62.4,3.1)r
5 (48.8,2.4)p 15 (28.4,1.4)p 25 (54.2,2.7r 35 (34.4,1.7) R
6 (42.8,2.1)r 16 (31.7,1.6)r 26 (81.3,4.1)r 36 (50.2,2.5)r
7 (73.1,3.7)r 17 (52.1,2.6)r 27 (51.6,2.6)r 37 (50.7,2.5)p
8 (59.8,3.0)r 18 (56.4,2.8)r 28 (38.8,1.9)r 38 (64.5,3.2)p
9 (45.1,2.3)r 19 (42.2,2.1)g 29 (53.6,2.7)r 39 (33.8,1.7)r
10 (41.0,2.1)p 20 (40.0,2.0) g 30 (80.6,4.0) 40 (56.7,2.8)r

The likelihood function based on such fuzzy data is calculated as

w05 = [T [T R §e¥] e,

0 0 ;=1
40 C5./0
fe—i/0 —1
_ e 20051 . H 1 + ( )
i=1 8i
Hence, the possibilistic posterior distribution based on the product T-norm, T(a,b) = a.b, is

obtained as follows (see Figure 2)

(930 2051 (e—=i/f—1)

e I L ] 30 <40,

T (01X) = @-e—%- 0,14 2] 40 < 0 < 50,
60— . ,—2051 140 0(e~%i/% 1)

| eI [1 - el ] 50 < 6 < 60.

where,

m(X) = sup {I(6;X) - 7*(0) } = 1(9 = 50; X) - 7 (50) = 1.6012 x 107
0<0

|
e i} —>
0 30 40 50 60

Figure 2. The possibilistic posterior distribution in Example 1.
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3 Point estimation without loss functions

Definition 6 Consider a possibilistic posterior distribution based on an observed fuzzy ran-
dom sample. Then, 6 = d(X) is called the maximum possibilistic posterior estimation of 6
(MPPE(9)) if

' (01X) > 7 (0)X),  Veo.

The above definition is similar to the definition of the maximum Bayesian likelihood estima-
tor, defined as the posterior mode, in the probabilistic approach, (see, Robert, 2001, p. 166).

Example 2 Consider the possibilistic posterior distribution in Example 1. The mazimum pos-
sibilistic posterior estimation of  is calculated as 6 = M PPE(#) = 50.

4 Point estimation based on a loss functions

In this section, we first define a risk function based on the possibilistic posterior distribution
7*(0|X), and then the point estimation (decision function) d(X) is obtained based on this risk
function. Let © be the parameter space. Any function L(0,d) : © x D — R is called a loss
function, where D is the space of possible decisions (here, the space of all estimations of 6).

Definition 7 The posterior risk function with the fuzzy data X for the estimation (decision
function) d(X) under the probability density function (or probability mass function) f(x|6) and
with the possibilistic prior distribution 7*(0), based on a loss function L(0,d), is defined as

r(7*(0|X), d) = sup {L@.d)-7(01X)}.

Definition 8 The estimation d*'P based on the loss function L(0,d) and the possibilistic pos-
terior distribution for fuzzy data 7*(0|X) is called a possibilistic Bayes estimation if

x (ol APBY ._ e
r(r”(01X),d"™) = minr(r"(0|X), ),
where D is the set of all estimations for 6.

Example 3 Consider the possibilistic posterior distribution in Example 1. Then,

i) Based on the quadratic loss function L(0,d) = (0 — d)?, the posterior risk function is as in
Figure 3. Here, the possibilistic Bayes estimation of 0, for which the posterior risk function
is minimized, is d*P = 48.9355-

r(x"(01X),d)
&

400 -

18.72 : > d

] ]
0 40 489355 60
Figure 3. The posterior risk function based on L(6,d) = (6 — d)? in Ezample 3.
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ii) Based on the loss function L(0,d) = |0 — d|, the posterior risk function in terms of d is
as in Figure /. Here, the possibilistic Bayes estimation of 0, for which the posterior risk
function is minimized, is d°P = 49.1694-

r(x*(0]X),d)
F 3
20 -

293

7 T 5 r > d
0 40 49.1694 60

Figure 4. The posterior risk function based on L(6,d) = |6 — d| in Ezample 3.

5 Conclusion

In the Bayesian method for estimation of an unknown parameter, it is often difficult to assuming
the prior information in stochastic terms. In addition, sometimes the observed data are non-
precise (fuzzy) rather than precise (crisp). This paper, by introducing the concept of likelihood
function for fuzzy data, described a possibilistic approach for dealing with such situations. The
presented approach uses the possibility distribution for modelling the prior information. Then,
based on the possibilistic posterior distribution, we proposed some methods to estimate the
unknown parameter of interest with/without a loss function.
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