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Abstract

We deal with two kinds of Cox regression models with varying co-
efficients. The coefficients vary with time in one model. In the other
model, there is an important random variable called an index variable
and the coefficients vary with the variable. In both models, we have
p-dimensional covariates and p increases moderately. However, it is the
case that only a small part of the covariates are relevant in these situa-
tions. We carry out variable selection and estimation of the coefficient
functions by using the group SCAD-type estimator or the adaptive group
Lasso estimator. We focus on time varying coefficient models here. We
examine the theoretical properties of the estimators, especially the L2

convergence rate, the sparsity, and the oracle property.

Keywords: adaptive group Lasso, B-splines, group SCAD, high-dimensional data,

oracle estimator, sparsity.

1 Introduction

The Cox regression model is one of the most popular and useful models in sur-

vival analysis. In recent years, many nonparametric and semiparametric variants

of the Cox regression model have been proposed. Among them, there are varying

coefficient models, partially linear models and their extensions, and additive and

functional ANOVA models. In this research, we consider varying coefficient models

and consider two kinds of Cox regression models with varying coefficients. The coef-

ficients vary with time in one model and with index variable U(t) in another model.

We focus on the former here and omit technical details due to the space limitation.

See Honda and Härdle (2012) for the details omitted here.

In recent years, a dimensional and model selection issue occurs in many applica-

tions : only a small part of the variables are relevant. Therefore statistical methods

for variable selection are needed. Penalized likelihood estimators such as the Lasso

or SCAD estimators have been among the standard tools in carrying out variable

selection and estimation simultaneously, Tibshirani (1996) and Fan and Li (2001).

Zou (2006) proposed the adaptive Lasso to correct some deficiencies of the Lasso and

proved that the adaptive Lasso estimators choose the relevant variables consistently.
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For Cox regression models with time varying coefficients, we deal with the cases

where the number of the covariates, p , increase moderately with the sample size, for

example p = O (n3/10) , where n is the sample size. We conduct variable selection

and estimation simultaneously by employing group SCAD-type or adaptive group

Lasso estimators.

Variable selection and estimation in Cox regression models are considered in

many papers. For example, Leng and Zhang (2006), Zhang and Lu (2007), Du et

al. (2010), Bradic et al. (2011), Zhang et al. (2012), Lian et al. (2013), and Hu and

Lian (2013). However, they have not considered varying coefficient models. Recently

Yan and Huang (2012) proposed the adaptive group Lasso in a Cox regression model

with time-varying coefficients. There is however still a lacuna of theoretical results

that this research aims to fill. We establish the sparsity for the group SCAD-type

and adaptive group Lasso estimator and the oracle property for the group SCAD-

type estimator under simple and interpretable assumptions. The derivation of the

theoretical results of this paper crucially depend on the methodology of Huang et

al. (2000).

We state the setup of the time-varying coefficient model and define the partial

likelihood estimator, the group SCAD-type estimator, and the adaptive group Lasso

estimator in section 2. We consider the asymptotics and establish the sparsity and

the oracle property of the estimators in section 3 . We denote the Euclidean norm

and the transpose of a vector v by |v| and vT , respectively.

2 Assumptions and estimators

In this section, we describe the Cox regression model with time-varying coefficients,

state some assumptions, and define the group SCAD-type and adaptive group Lasso

estimator. In deriving the main results, we repeatedly use insights of Huang et al.

(2000), of which we also borrow the notation.

Let T and C be a failure time and a censoring time. The interest is in the failure

time. However, we observe only Y = min{T,C} on [0, τ ] subject to censoring for

some finite τ and δ = I(T ≤ C) . We define

N(t) = δ I(Y ≤ t) and Z(t) = I(Y ≥ t).

We also observe a p -dimensional time-dependent covariate X(t) . Suppose that

(Yi, δi,Xi(t)) , where Xi(t) = (Xi1(t), . . . , Xip(t))
> , i = 1, . . . , n , are i.i.d. obser-

vations of (Y, δ,X(t)) . The hazard function of Ti w.r.t. an appropriate filtration

is given by

λ(t) = λ0(t) exp
{ p∑
j=1

g0j(t)Xij(t)
}

= λ0(t) exp{g>0 (t)Xi(t)}, (1)

where λ0(t) is an unknown hazard function and g0(t) = (g01(t), . . . , g0p(t))
> is a

vector of unknown time-varying coefficients and assumed to be twice continuously

differentiable.

We estimate g0(t) by choosing a basis {B1(t), . . . , BKn(t)} on [0, τ ] and max-

imizing the partial likelihood with/without a penalty term. We allow p to increase

moderately (e.g. p = O (n3/10)) and consider variable selection.
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More precisely for the basis {B1, . . . , BKn} , we write

B(t) = (B1(t), . . . , BKn(t))> or B = (B1, . . . , BKn)>.

Then the covariate vector for the partial likelihood is Xi(t) ⊗B(t) . The approxi-

mation error ρn of the basis {B1, . . . , BKn} is defined by

ρn = sup
g0

p∑
j=1

inf
βj∈RKn

sup
0≤t≤τ

|β>j B(t)− g0j(t)|, (2)

where g0 = (g01, . . . , g0p)
> is over the set of functions satisfying Assumption G in

Honda and Härdle (2012) . Then we have ρn = O(K−2n ) by the standard theory.

An example of the basis is an equi-spaced B-spline basis of order m(m ≥ 2) .

We define the estimation space G0 by

G0 = {(β>1 B(t), . . . , β>p B(t))>|βj ∈ RKn , j = 1, . . . , p}. (3)

For g = (g1, . . . , gp)
> ∈ G0 , we define ‖g‖L2 by

‖g‖2L2
=

p∑
j=1

‖gj‖2L2
=

p∑
j=1

1

τ

∫ τ

0
g2j (t)dt. (4)

Then the partial likelihood lp(g) is defined by

lp(g) =
1

n

n∑
i=1

∫ τ

0
g>(t)Xi(t)dNi(t) (5)

−
∫ τ

0
log

[
n−1

n∑
i=1

Zi(t) exp
{
g>(t)Xi(t)

}]
dN̄(t),

where N̄(t) = n−1
∑n

i=1Ni(t) .

Finally in this section, we define three estimators of g0 . The first one is the

partial likelihood estimator and defined by

g̃n = argmax
g∈G0

lp(g) (6)

It will be shown in Theorem 1 below that the L2 convergence rate of g̃n is :

rpn = max{(pKn/n)1/2, ρn}. (7)

We introduce the sparsity assumption.

Assumption S: For some s , g0j = 0, s+ 1 ≤ j ≤ p .

To deal with this sparsity, we present two penalized partial likelihoods Qp(g)

and Q̄p(g) for g = (g1, . . . , gp)
> ∈ G0 .

Qp(g) = lp(g)−
p∑
j=1

pλn(‖gj‖L2), (8)

where λn is a tuning parameter and pλ(·) is a SCAD-type penalty function to be

specified in Assumption P below.
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Assumption P:

(i) pλ(t) is a monotone increasing and concave function on [0,∞) with pλ(0) = 0 .

Besides, there are positive constants a0 , b0 , and c0 such that p′λ(t) = 0, t ≥ a0λ,
and p′λ(t) ≥ c0λ, 0 < t ≤ b0λ.
(ii) λn/rpn →∞ and min1≤j≤s ‖g0j‖L2/λn →∞ .

Another penalized partial likelihood Q̄p(g) is defined by

Q̄p(g) = lp(g)− λ′n
p∑
j=1

wj‖gj‖L2 , (9)

where λ′n is another tuning parameter and wj , j = 1, . . . , p , are weights to be

constructed from a preliminary estimator. Notice that Q̄p(g) is a concave function.

The group SCAD-type estimator ĝn and the adaptive group Lasso estimator ḡn
are given by

ĝn = argmax
g∈G0

Qp(g) and ḡn = argmax
g∈G0

Q̄p(g). (10)

We can also define ls(g) , Qs(g) , and Q̄s(g) for the s in Assumption S by ignor-

ing the last (p−s) elements of the covariates or taking Xi(t) = (Xi1(t), . . . , Xis(t))
>

and g = (g1, . . . , gs)
> .

3 Main theorems

The L2 convergence rate of the partial likelihood estimator g̃n is derived in Theo-

rem 1.

Theorem 1 Suppose that the necessary technical assumptions hold. Then with

probability tending to 1, there is a unique maximizer g̃n = (g̃n1, . . . , g̃np)
> of lp(g)

over G0 and we have

‖g̃n − g0‖L2 = Op(rpn).

The existence of the group SCAD-type estimator is verified in Theorem 2 and

the sparsity and oracle property is established is Theorem 3.

Theorem 2 Suppose that all the assumptions in Theorem 1 and Assumptions P

and S hold. Then for any positive ε , there is a positive constant M such that

lim
n→∞

P( There is a local maximizer ĝn

of Qp(g) over G0 such that ‖ĝn − g0‖L2 ≤Mrpn) > 1− ε.

Before we present Theorem 3, we define two properties. If the local maximizer

of ĝn = (ĝn1, . . . , ĝnp)
> satisfies under Assumption S,

ĝnj = 0, j = s+ 1, . . . , p, (11)

with probability tending to 1, we say that ĝn has the sparsity. The maximizer of

ls(g) is called an oracle estimator since we use the knowledge of the true model

under Assumption S. If an estimator is asymptotically equivalent to such an oracle

estimator, we say that the estimator has the oracle property.
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Theorem 3 Suppose that the assumptions in Theorem 2 and some additional as-

sumptions hold and let {dn} be a sequence of positive numbers satisfying dn → ∞
and λn/(dnrpn)→∞ .

(i) With probability tending to 1, any local maximizer ĝn of Qp(g) over G0 such

that ‖ĝn − g0‖L2 ≤ dnrpn satisfies (11).

(ii) With probability tending to 1, the local maximizer in (i) is the unique maximizer

of ls(g) and satisfies
s∑
j=1

‖ĝnj − g0j‖2L2
= O(r2sn).

Now we state the properties of the adaptive group Lasso estimator.

Theorem 4 Suppose that the assumptions in Theorem 1 and Assumption S hold

and that λ′n
√
smax1≤j≤swj/rpn = Op(1) . Then with probability tending to 1, there

is a unique maximizer ḡn = (ḡn1, . . . , ḡnp)
> of Q̄p(g) over G0 and we have

‖ḡn − g0‖L2 = Op(rpn).

Theorem 5 Suppose that the assumptions in Theorem 4 and some additional as-

sumptions hold and that λ′n mins<j≤pwj/(rpn)→∞ in probability. Then with prob-

ability tending to 1, the unique maximizer ḡn has the sparsity and is equal to the

unique maximizer of Q̄s(g) . In addition we have

s∑
j=1

‖ḡnj − g0j‖2L2
= Op(r2sn).

Remark 1 Suppose that the true model is a semi-varying coefficient model. Then

we can detect the semi-varying coefficient model with probability tending one by

modifying the estimators in the following way. We decompose gj of g = (g1, . . . , gp) ∈
G0 , by

gj(t) =
1

τ

∫ τ

0
gj(s)ds+

{
gj(t)−

1

τ

∫ τ

0
gj(s)ds

}
= gaj + gbj(t)

and ‖gj‖2L2
= |gaj |2 + ‖gbj‖2L2

. Then we define Q′p(g) and Q̄′p(g) by

Q′p(g) = lp(g)−
p∑
j=1

{pλn(|gaj |) + pλn(‖gbj‖L2)}

and

Q̄′p(g) = lp(g)− λ′n
p∑
j=1

(w1j |gaj |+ w2j‖gbj‖L2),

where w1j and w2j are weights.
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