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ABSTRACT
This paper investigates the performance of bilitieae series autoregressive moving average (ARMA)

modelsi.e. BL (p, O, r, s) and BL (p, q, r, s)eTull bilinear model was fitted to monthly datarmmber

of marriages conducted at Addis Ababa City Muniipéor 19 years. The estimation of the parameters
and residual variance of BL (p, o, r, S) was comgavith BL (p, g, I, S). In the series, having ¢desed

the best subset autoregressive model AR (p) anlbetfiesubset autoregressive moving average model
ARMA (p, 1) as our initial values in fitting BL (&, 5, 3) and BL (6, 1, 5,3); it was found out ttie
residual variance attached to BL (6, 1, 5, 3) waaller than BL (8, 0, 5, 3) meaning that the b#éine
time series with ARMA as the initial value perfomirigetter than bilinear time series with AR. The-non
linearity of the marriage data used made us contparperformance of the bilinear time series vt t
linear.

KEYWORDS: Bilinear time series, Yule Walker Equation, Autaregsive, Moving average, Autoregressive

moving average.

1. INTRODUCTION

Building probability models for time series datarsimportant activity, which enables the statiatic

to understand the underlying random mechanism géngrthe series. They also provide invaluable
assistance in forecasting. Linear models have heed quite successfully for analyzing time series
data. There are situations when it is felt thaedintime series models may not be adequate in
explaining the underlying random mechanism foransg, the sunspot data and Canadian lynx data.
Jones (1978), Granger and Andersen (1978a), Haggh®zaki (1980), Priestley (1980), Tong and
Lim (1980) and Subba Rao (1981) have considerdicpkar types of nonlinear time series models.
The nonlinear models considered by Granger and Bsedg1978a) and Subba Rao (1981) are known
as bilinear time series models. This class of seres has been found to provide a better fit ds we
useful in many areas including biological scien@slogy and engineering (Mohler (1973), Bruni,
Dupillo and Roch (1974)).

Undoubtedly, the nonlinear time series models aveernomplex than linear models and they lead to
several problems, which sometimes may be diffitkolve. These problems include:

1. Estimation of the parameter of these models is rdifieult.

2. Statistical properties of quite a number of nordineodels are quite difficult to investigate.
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3. Study of the sampling distribution of the estimatas sometimes be quite complicated.
4. Lastly, evaluation of optimal forecasts for sevestaps in the future from these models is not
easy, though not impossible.

In view of these problems involved, it seems reabt:to expect that when a nonlinear time series
model is fitted, its performance must be signifibabetter than a linear time series model. Onéasuc
model for which it may be possible to obtain optifogecasts for several steps ahead and can perform
better than a linear model is the bilinear timeesemodel. Some theoretical considerations of this
model have been reported in the papers by GramgeAaderson (1978a), Subba Rao (1981), Quinn
(1982), and W.K. LI (1984).

A time series Xis a bilinear process of order (p, g, r, ) ifatisfies the model
:Zp:ﬂxt—i + € _iejem‘ +iil[”u - (1.1)
i=1 j=1 i=1 j=1
where {g}is a sequence of independent, identically distedurandom variables with mean zero and
varianceo’. We assume also that the model is invertible anthave a realization fx Xz... Xn} on
thetime series {§. We denote (1.1) by BL (p, q, r, S). This model wassidered by Granger and
Andersen (1978a). We therefore investigate theopmidnce of model (1.1) and

Zi)lqalxt—i +Zrlzslﬁu t j et (12)

i=1 j=1
and see which of the models performs better. Wetegl.2) by BL (p, O, r, S)

A major problem with bilinear time series modellisghe problem of model selection. The problem
is considerably more difficult than the autoregnessoving average case (i.e. r =s =0). In thedr
ARMA situation a preliminary identification on theders of p and g can be done using sample
autocorrelations and partial autocorrelation (Bexkins, 1970). With the presence of bilinear term
in (1.1) the usual Box-Jenkins procedure of idérdtfon cannot be applied. Thus, most authors tesor
to the use of AIC in selecting the right combinataf p, g, r and s.

2. THE PROPOSED ESTIMATION TECHNIQUE

We now consider the estimation of the parameteteeo§calar bilinear time series model given by

Xt_zp: t|+e_zgetj+22/8u € (21)

i=1 j=1

e =X, -2 aX, +Y 06, -3 Y B X e, (2.2)

i=1 j=1 i=1 j=1
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where {g} are independent and eachi® distributed N (0,07). Here we assume the model 2.1 is

invertible, and further assume we have a realinapaq, x>

.. Xn} on thetime series {§. The joint
density function of {@, en+1... &} where m = max (r, s) 4 is given by

1 1
(2720. )(n m+1) /2 Xp(_ 20.2 Zqz)

Since the Jacobian of the transformation from, {en+1
likelihood function of {, Xm+1

(2.3)

.. en} to {Xm, Xm+1... Xn} iS unity, the

Xn} is the same as the joint density function of.{@n«+1... &}.
Maximizing the likelihood function is the same agimizing the functiorQ(G) , where
QAG) =€ (2.4)
with respect to G =(@.4,....4,:6,.6,,....0,;By,....B) For convenience, we shall write
G =¢.G,=4¢,...... G, = B.where R = 1+p+qg+rs. Then the partial derivativeQdf5) are
dQ(G) L de :
——==2 — i=1,2...R 2.5
dG tzzmq dG ( ) (2.5)
d’Q(G) _ ., -, de de
= 2.6
dGdG, 228 aG, tzmq dG dG (2.6)
where these partial derivatives of e(t) satisfyrégmirsive equations
if i=0
+ZW(t = {l ! I_ .
d¢ = q X i 1=22,...,p
ZW(t) e* e, if i=1,2....q 2.7)
dH =
W (t)—=-X m (k=1,2,...,r;m=1,2,... 2.8
dBkm. el )dqm. o > 9
s 2
+ (t) =0 (,i'=0,1,2,...,p) (2.9)
dqo.dco le 40.d<0i
d’e s .
t =0 L1'=0,1,2,.. 2.10
do.dé, le ()dé?dé? ( D ( )
d’e s d’e d’e,_.
t W (t t-j X t-m — 0
dgdB ., +JZ::l )¢ )dBkmud(” MR do,
(i=0,1,2,....p;k1,2,....r; m=1,2,...9) (2.11)
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2 ; d’ 2
d—et+ ZWJ (t)iﬁ' Xt—k d et—m =0
dods,, = '’ dB,_do d6

(i=1,2,...,9 ; k=1,2,...,r; m=1,2,...9) (2.12)
d’e s d’e,_.
+ D W (t -=0 2.13
dedé, ,Zl ‘()d@dﬁi (213)
2 s 2 ) 2
d—et‘ + ij (t)L + xt'_k d et—ni - _xt_k det'—m
dB i,y dB i=1 dB ,; dB dB dB
k, K=1,2,...,r;mm' =1,2,...9 (2.14)

W (t) = Z Bij X1, we assumeie 0 (t =1, 2, ..., m-1) and also

2
% _, Y& g (,j=1,2, ...,R;t=1,2, ..., m-1)

From these assumptions and 3.2.8 it follows thasdtond order derivatives with respeaptdi =
0,1,2...p)and (i=0,1,2... q) are zero. For a given set ofreal{pi}, { 4} and {Bj} one can
evaluate the first and second order derivativesgugie recursive equations 2.6, 2.7, 2.8 and 2.14.
Now let

V'(G) = 0Q(G) 9Q(G) 0Q(G)
36,36, 3G,

and leH (G) = [OZQ(G)IaGian] be a matrix of second partial derivatives. ExpagdiitG),
nearG = G in a Taylor series, we obtairl[V((AB)]é:G =0 =V(G) +H(G)(é -G) . Rewriting this
equation we geté -G=-H™"(G)V(G), and thus obtain an iterative equation given by
G*¥ =G® -HYGY)V(GY) where @& is the set of estimates obtained at thetage of iteration.

3. ANALYSISOF MONTHLY MARRIAGE DATA

The data considered is monthly number of marriagegucted at the Addis Ababa City Municipality
for the years 1992 to 2011, giving 252 observatiditee time plot of this data shows that it is

nonlinear, encouraging.
Fitting of Full AR Modelsto the Data

The linear models are fitted to the first 176 olsagons, and we consider the choice of the order of
the linear model. The linear models of all ordertaAR(30) are fitted. The choice of the order is
made on the basis of the information criterion &bike (1977), which is given by

N P
AICr = NIn g2 + 2p whereg;, = %Z(&—Zqz{x[_i)z
t=1 i=1
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is the maximum likelihood estimate of the residualiance after fitting the AR(p). In practice, we
specify a maximum lag L and fit successively AlGQ, (AIC (2)... The minimum AIC is the best
model for the data. In view of this, we found tA&€ is minimum when p=8. The fitted model is

X, =2.0324X,_, +0.1263X,_, —0.2021X,_, - 0.1363X,_, +

1.1142X, . —0.3213X,, —0.0951X, , +0.1714X, ; + ¢

Fitting of Best Subset AR Modelsto the Data
The method described in chapter one was employéting of best subset AR models. There dfe 2
—1 = 255 possible subsets. The choice of the asdeade on the basis of minimum AIC and having

considered the 255 possible subsets, it is fouatdAIC is minimum in the following model
X, =1.3066x,_, —0.5181x,_, + 0.1868 _, + ¢

Fitting Of Full ARMA (P, 1) Modelsto the Data

Having considered the full AR (p) which later formgr initial values, introducing a MA term into
our system we want to see whether there will bactah in the residual variance. The linear models
are fitted to the 176 observations and we conglgechoice of the order of the model by using AIC.
In view of this, it is found that AIC is minimum wh p = 6 and g = 1 and the fitted model is:

Xt = 2.057543% — 1.512057 2 + 0.264533% +0.330741x- 0.39.341xs + 0.246004% + 0.781977a + @
Fitting Of Best Subset ARMA (p, 1) Modelsto the Data

The method described in above was employed imdjttif best subset ARMA (p, 1) models. There
are 2 — 1=63 possible subsets. The choice of the omdaraide on the basis of minimum AIC and
having considered the 63 subsets, it is foundAh@tis minimum in the model

Xt = 2.092475% — 1.550083% + 0.381015%: + 0.073620% — 0.823840¢ + @
Fitting of Full Bilinear Modél to the Marriage Data with AR as I nitial Value

We now employ the estimation procedure and algworitor fitting bilinear models. It has been
pointed out thaG ® is the set of estimates obtained at thestage of iteration. Therefore, we need
a good set of initial values of the parameterddd she iteration. For this study, we have chasen
coefficients of the AR part of above sections, hig equal to the corresponding best subset AR
models. The bilinear models of all orders up to 8L, 5, 3) are fitted. The choice of the order is
made on the basis of AIC. It is found that AIC imimum when p=5 and q=3. The estimated values
of the coefficient of the model are:

a,=1.3066,3, = -0.5181,4, =0.1868 and the valudg (I = 1,2,3,4,5 ; j = 1,2,3) are given by,

0.000459 -0.025968 0.011788
0.019074 0.032467-0.051531
b, =|-0.049079 0.012807 0.049275
0.027194 -0.036035 —0.00891
0.003068 0.015813 -0.00688
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Fitting Of Full Bilinear Model with ARMA (P, 1) AslInitial Values

As it has been stressed thdf @ the set of estimates obtained at the kth sthgeration, therefore
making use of the initial value of ARMA which isatlbest subset; we now consider the choice of the
bilinear model. The bilinear models of all up to B, 1, 5, 3) are fitted. The choice of the order i
made on the basis of the information criterions found that AIC is minimum when p=5 and g=3.
The estimated values of the coefficient of the nhade as followsa =2.0924753a,=-1.550083,4,

=0.381015,4,=0.073620, 6=-0.823840 and values of ti=1, 2, 3, 4, 5; j= 1, 2, 3) are given by,

[-0.008157  -0.000397 0.019829 |
-0.005019 0.004150 -0.047450

b; =[-0.029462  0.000483 0.033112
-0.007564 -0.000718  -0.021676
|-0.0021676 0.001504 -0.009393]

VALUESOF US AND AIC FOR THE DIFFERENT MODELS

MODEL |FULL |FULL SUBSET | SUBSET BILINEAR AR BILINEAR (ARMA)
(ARs) | (ARMAgs1) | (AR9) (ARMAs;) | BL(8,0523) BL(6,1,5,3)
= 224.07 | 220.1432 230.0242] 226.8696 158.74488 157.02
e
AIC 5.072 | 5.473517 5.474023| 5.479771 5.257106 5.783114

The above summary gives us the understanding &wadn the initial values to be the best ARMA
model performed better than having the initial ealto be the best AR. Therefore the model BL (p,
0, r, s) performed better than BL(p, g, r, s). Tésidual variance made us conclude thus. It iequit
glaring from our analysis and the model above bilatear model performed better than linear model
looking at their residual variance.

4. SUMMARY AND CONCLUSIONS

Our method of estimation is a non-linear least sguaethod which is being estimated iteratively
which makes use of initial values. As a result wehie best subset AR models to our data making
use of algorithm described by Haggan and Oyetd§80Q) and the coefficient taken as our initial

values. Also, because we want to compare BL(p, 8) with BL(p, g, r, s) we fit the best subset

ARMA (p, 1) to our data and the coefficient takenoar initial values.

Having got our initial values, we fitted bilinearodel to our data that is BL(8, 0, 5, 3) as well as
BL(6, 1, 5, 3). The residual variance attached to(® 1, 5, 3) is smaller than the residual varanc
attached to BL (8, 0, 5, 3) suggesting that BL1(65, 3) perform better than BL (8, 0, 5, 3). Itswa
glaring that bilinear model performed better thaedr model because the data used had been tested
for linearity and found out that it was non-linednich could be best estimated by bilinear model.
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