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ABSTRACT 
 

This paper investigates the performance of bilinear time series autoregressive moving average (ARMA) 

models i.e. BL (p, 0, r, s) and BL (p, q, r, s). The full bilinear model was fitted to monthly data on number 

of marriages conducted at Addis Ababa City Municipality for 19 years. The estimation of the parameters 

and residual variance of BL (p, o, r, s) was compared with BL (p, q, r, s). In the series, having considered 

the best subset autoregressive model AR (p) and the best subset autoregressive moving average model 

ARMA (p, 1) as our initial values in fitting BL (8, 0, 5, 3) and BL (6, 1, 5,3); it was found out that the 

residual variance attached to BL (6, 1, 5, 3) was smaller than BL (8, 0, 5, 3) meaning that the bilinear 

time series with ARMA as the initial value performed better than bilinear time series with AR. The non-

linearity of the marriage data used made us compare the performance of the bilinear time series with the 

linear.  
 

KEYWORDS: Bilinear time series, Yule Walker Equation, Autoregressive, Moving average, Autoregressive 

moving average. 
 

1. INTRODUCTION 

Building probability models for time series data is an important activity, which enables the statistician 

to understand the underlying random mechanism generating the series. They also provide invaluable 

assistance in forecasting. Linear models have been used quite successfully for analyzing time series 

data. There are situations when it is felt that linear time series models may not be adequate in 

explaining the underlying random mechanism for instance, the sunspot data and Canadian lynx data. 

Jones (1978), Granger and Andersen (1978a), Haggan and Ozaki (1980), Priestley (1980), Tong and 

Lim (1980) and Subba Rao (1981) have considered particular types of nonlinear time series models. 

The nonlinear models considered by Granger and Andersen (1978a) and Subba Rao (1981) are known 

as bilinear time series models. This class of time series has been found to provide a better fit as well 

useful in many areas including biological sciences, ecology and engineering (Mohler (1973), Bruni, 

Dupillo and Roch (1974)). 
 

Undoubtedly, the nonlinear time series models are more complex than linear models and they lead to 

several problems, which sometimes may be difficult to solve. These problems include: 

1. Estimation of the parameter of these models is more difficult. 

2. Statistical properties of quite a number of nonlinear models are quite difficult to investigate. 
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3. Study of the sampling distribution of the estimates can sometimes be quite complicated. 

4. Lastly, evaluation of optimal forecasts for several steps in the future from these models is not 

easy, though not impossible. 
 

In view of these problems involved, it seems reasonable to expect that when a nonlinear time series 

model is fitted, its performance must be significantly better than a linear time series model. One such 

model for which it may be possible to obtain optimal forecasts for several steps ahead and can perform 

better than a linear model is the bilinear time series model. Some theoretical considerations of this 

model have been reported in the papers by Granger and Anderson (1978a), Subba Rao (1981), Quinn 

(1982), and W.K. LI (1984).  
 

A time series Xt  is a bilinear process of order (p, q, r, s) if it satisfies the model   
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where {et}is a sequence of independent, identically distributed random variables with mean zero and 

variance 2σ . We assume also that the model is invertible and we have a realization {x1, x2… xn} on 

the time series {xt}.  We denote (1.1) by BL (p, q, r, s). This model was considered by Granger and 

Andersen (1978a). We therefore investigate the performance of model (1.1) and 
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and see which of the models performs better. We denote (1.2) by BL (p, 0, r, s) 
 

A major problem with bilinear time series modelling is the problem of model selection. The problem 

is considerably more difficult than the autoregressive moving average case (i.e. r = s = 0). In the linear 

ARMA situation a preliminary identification on the orders of p and q can be done using sample 

autocorrelations and partial autocorrelation (Box–Jenkins, 1970). With the presence of bilinear term 

in (1.1) the usual Box-Jenkins procedure of identification cannot be applied. Thus, most authors resort 

to the use of AIC in selecting the right combination of p, q, r and s.  

2. THE PROPOSED ESTIMATION TECHNIQUE  
 

We now consider the estimation of the parameters of the scalar bilinear time series model given by 
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where {et} are independent and each et is distributed N (0, 2
eσ ). Here we assume the model 2.1 is 

invertible, and further assume we have a realization {x1, x2… xn} on the time series {xt}. The joint 

density function of   {em, em+1… en} where m = max (r, s) + 1 is given by 
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Since the Jacobian of the transformation from {em, em+1… en} to {x m, xm+1… xn} is unity, the 

likelihood function of {xm, xm+1… xn} is the same as the joint density function of {em, em+1… en}. 

Maximizing the likelihood function is the same as minimizing the function )(GQ , where   

                        ∑
=

=
n

mi
teGQ 2
,)(                                                     (2.4)  

with respect to ),....,;,....,,;,....,,( 112110
'

rsqp BBG θθθφφφ= For convenience, we shall write 

rsR BGGG === ,.......,, 1201 φφ where R = 1+p+q+rs. Then the partial derivatives of Q (G) are: 
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where these partial derivatives of e(t) satisfy the recursive equations                                         
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From these assumptions and 3.2.8 it follows that the second order derivatives with respect to φi (i = 

0, 1, 2… p) and iθ   (i = 0, 1, 2… q) are zero. For a given set of values {φi}, { iθ } and {Bij } one can 

evaluate the first and second order derivatives using the recursive equations 2.6, 2.7,  2.8 and 2.14. 
Now let 
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equation we get 1ˆ ( ) ( )−− = −G G H G V G , and thus obtain an iterative equation given by  
( 1) ( ) 1 ( ) ( )( ) ( )k k k k+ −= −G G H G V G  where G(k)  is the set of estimates obtained at the kth stage of iteration.  

 

3.  ANALYSIS OF MONTHLY MARRIAGE DATA  

The data considered is monthly number of marriages conducted at the Addis Ababa City Municipality 

for the years 1992 to 2011, giving 252 observations. The time plot of this data shows that it is 

nonlinear, encouraging.  

Fitting of Full AR Models to the Data 

The linear models are fitted to the first 176 observations, and we consider the choice of the order of 

the linear model. The linear models of all order up to AR(30) are fitted. The choice of the order is 

made on the basis of the information criterion of Akaike (1977), which is given by 
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is the maximum likelihood estimate of the residual variance after fitting the AR(p). In practice, we 

specify a maximum lag L and fit successively AIC (1), AIC (2)… The minimum AIC is the best 

model for the data. In view of this, we found that AIC is minimum when p=8. The fitted model is 
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Fitting of Best Subset AR Models to the Data 

The method described in chapter one was employed in fitting of best subset AR models. There are 28 

–1 = 255 possible subsets. The choice of the order is made on the basis of minimum AIC and having 

considered the 255 possible subsets, it is found that AIC is minimum in the following model 

ttttt exxxX ++−= −−− 821 1868.05181.03066.1     

Fitting Of Full ARMA (P, 1) Models to the Data 

Having considered the full AR (p) which later forms our initial values, introducing a MA term into 

our system we want to see whether there will be reduction in the residual variance. The linear models 

are fitted to the 176 observations and we consider the choice of the order of the model by using AIC. 

In view of this, it is found that AIC is minimum when p = 6 and q = 1 and the fitted model is: 
 

Xt = 2.057543xt-1 – 1.512057 xt-2 + 0.264533xt-3 +0.330741xt-4- 0.39.341xt-5 + 0.246004xt-6 + 0.781977et-1 + et 
 

Fitting Of Best Subset ARMA (p, 1) Models to the Data 
 

The method described in above was employed in fitting of best subset ARMA (p, 1) models. There 

are 26 – 1=63 possible subsets. The choice of the order is made on the basis of minimum AIC and 

having considered the 63 subsets, it is found that AIC is minimum in the model 
 

              Xt = 2.092475xt-1 – 1.550083xt-2 + 0.381015xt-3 + 0.073620xt-6 – 0.823840et-1 + et  
 

Fitting of Full Bilinear Model to the Marriage Data with AR as Initial Value 
 

We now employ the estimation procedure and algorithm for fitting bilinear models. It has been 

pointed out that G (k) is the set of estimates obtained at the kth stage of iteration. Therefore, we need 
a good set of initial values of the parameters to start the iteration. For this study, we have chosen the 
coefficients of the AR part of above sections, which is equal to the corresponding best subset AR 
models. The bilinear models of all orders up to BL(8, 0, 5, 3) are fitted. The choice of the order is 
made on the basis of AIC. It is found that AIC is minimum when p=5 and q=3. The estimated values 
of the coefficient of the model are: 
 

1̂a =1.3066, 2â  = -0.5181, 3â  =0.1868 and the values blj (l = 1,2,3,4,5 ; j = 1,2,3) are given by, 
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Fitting Of Full Bilinear Model with ARMA (P, 1) As Initial Values 

As it has been stressed that G(k) is the set of estimates obtained at the kth stage of iteration, therefore 

making use of the initial value of ARMA which is the best subset; we now consider the choice  of the 

bilinear model. The bilinear models of all up to BL (6, 1, 5, 3) are fitted. The choice of the order is 

made on the basis of the information criterion. It is found that AIC is minimum when p=5 and q=3.  

The estimated values of the coefficient of the model are as follows 1̂a =2.092475 2â =-1.550083, 3â

=0.381015, 6â =0.073620, c1=-0.823840 and values of blj (i=1, 2, 3, 4, 5; j= 1, 2, 3) are given by, 
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VALUES OF 2
êσ  AND AIC FOR THE DIFFERENT MODELS 

 

MODEL FULL 
(AR8) 

FULL 
(ARMA6,1) 

SUBSET 
(AR3) 

SUBSET 
(ARMA3,1) 

BILINEAR AR 
BL(8,0,5,3) 

BILINEAR (ARMA) 
BL(6,1,5,3) 

2
êσ  224.07 220.1432 230.0242 226.8696 158.74488 157.02 

AIC 5.072 5.473517 5.474023 5.479771 5.257106 5.783114 
 

The above summary gives us the understanding that having the initial values to be the best ARMA 

model performed better than having the initial values to be the best AR. Therefore the model BL (p, 

0, r, s) performed better than BL(p, q, r, s). The residual variance made us conclude thus. It is quite 

glaring from our analysis and the model above that bilinear model performed better than linear model 

looking at their residual variance.  
 

4. SUMMARY AND CONCLUSIONS 

Our method of estimation is a non-linear least square method which is being estimated iteratively 

which makes use of initial values. As a result we fit the best subset AR models to our data making 

use of algorithm described by Haggan and Oyetunji (1980) and the coefficient taken as our initial 

values. Also, because we want to compare BL(p, 0, r, s) with BL(p, q, r, s) we fit the best subset 

ARMA (p, 1) to our data and the coefficient taken as our initial values. 
 

Having got our initial values, we fitted bilinear model to our data that is BL(8, 0, 5, 3) as well as 

BL(6, 1, 5, 3). The residual variance attached to BL (6, 1, 5, 3) is smaller than the residual variance 

attached to BL (8, 0, 5, 3) suggesting that BL (6, 1, 5, 3) perform better than BL (8, 0, 5, 3). It was 

glaring that bilinear model performed better than linear model because the data used had been tested 

for linearity and found out that it was non-linear which could be best estimated by bilinear model. 
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