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Abstract 

 
It is well known that unequal income distribution, yielding poverty, stratification and polarization, can be a serious economic 

and social problem. The reliable inequality analysis of both, total population of households and subpopulations classified by 

different characteristics, can be a helpful piece of information for economists and social policy- makers. Among many 

income inequality measures the Gini index based on the Lorenz curve is the most popular. Another interesting measure of 

income inequality is the Zenga index, based on the relation between income and population quantiles. In the paper some 

nonparametric estimators of Gini and Zenga inequality measures are presented and analyzed from a point of view of their 

statistical properties. In particular, the bias, efficiency and normality of the estimators are considered. The Monte Carlo 

experiments include the cases of heavy-tailed and light-tailed distributions as theoretical models. Finally, the estimators are 

applied to the data on income distributions in Poland. 
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1.  Introduction 

 

Measures of inequality (called also concentration coefficients) are widely used to study income, 

welfare and poverty issues. They can also be helpful to analyze the efficiency of a tax policy or to 

measure the level of social stratification and polarization. They are most frequently applied to dynamic 

comparisons (comparing inequality across time). Among many inequality measures, the Gini and 

Zenga coefficients are of greatest importance. The Gini coefficient is the most widely used measure of 

income inequality, mainly because of its clear economic interpretation. The Zenga „point 

concentration” measure based on the Zenga curve has recently received some attention in the literature.  

         The Gini inequality index, based on the Lorenz curve, can be expressed as follows: 
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where: p = F(y)  is a cumulative distribution function of income, L(p)- the Lorenz function given by 

the following formula: 
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where μ denotes the expected value of a random variable Y and F
–1

(p) is the distribution p
th
 quantile. 

Using the definition (1) it can be found that: (see: Davidson, 2010) 
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        Suppose that an iid sample of size n is drawn randomly from the population, and let its empirical 

distribution function be denoted as F̂ . The natural plug-in estimator of  G can be defined as: 
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        It can be noticed that using (4) different estimates of G can be obtained,  depending on how the 

empirical distribution function is defined (right- or left-continuous). To avoid the ambiguity one can 

estimate the value of the Gini index from discrete data using the formula based on order statistics: 

(see: Sen ,1973;  Fei, Ranis and Kuo, 1979) 
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where: y(i) – household incomes in a non- descending order,          

            i - rank of i-th economic unit in n-element sample.  

 

      An alternative to the Lorenz curve (2), is the concentration curve proposed by Zenga (1984, 1990), 

defined in terms of quantiles of the size distribution and the corresponding quantiles of the first-

moment distribution. It is called “point concentration measure”, being sensitive to changes of 

inequality in each part (point) of a population.  

 The Zenga point measure of inequality is based on the relation between income and population 

quantiles:  
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where yp denotes the population p
th

 quantile and yp
*
 is the corresponding income quantile defined as 

follows:  
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 The function Q(p), called first-moment distribution function, can be interpreted as cumulative 

income share related to the mean income. Thus the Zenga approach consists of comparing the 

abscissas at which F(p) and Q(p) take the same value p.  

 Zenga synthetic inequality index can be expressed as the area below the Zenga curve (6), and is 

defined as simple arithmetic mean of point concentration measures  Zp, p <0,1>: 
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 The commonly used nonparametric estimator of the Zenga index (8) was introduced by Aly and 

Hervas (1999) and can be expressed by the following equation:  
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where:   yi:n – i-th order statistics in n-element sample,  

             y  – sample arithmetic mean.  

 

 

2.  Results 

 

A  simulation study has been conducted to investigate large sample properties of the estimators for 

Gini and Zenga inequality coefficients given by the formulas (5) and (9). In particular, the bias, 

efficiency and normality of the estimators were considered.   

     In the experiment two different probability distributions were used as population models:  

-  two-parameter lognormal distribution,  

-  three-parameter Dagum distribution.  
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     The lognormal distribution, being a classical model of income and wage size distributions, has 

frequently been applied for at least the last 60 years. It is still being used for various income data,  

especially for transition-economies.  The Dagum model (known also as Burr type-III distribution) is, 

contrary to the lognormal,  a heavy-tailed distribution. It has proved sufficient goodness-of-fit in many 

applications. It is a flexible distribution that can be  unimodal or zeromodal, depending on parameters. 

Thus it can approximate income distributions, which are usually unimodal, and wealth distributions, 

that are zeromodal. (for details see: Dagum, 1977; Kleiber, Kotz, 2003)   

     The parameters of both theoretical distributions mentioned above were established on the basis of 

real income data coming from Polish HBS, comprising large variety of subpopulations differing in the 

level of income inequality. The sample sizes were fixed as n=100, 200, 300, 400, 500, 1000, 2000, 

3000, 5000, 7000. The number of repetitions of Monte Carlo experiment was N=10000. 

      The results of the calculations are presented in tables 1 and 2. Table 1 summarizes basic statistical 

characteristics of the empirical  distributions of Gini  and  Zenga inequality coefficients, assuming the 

lognormal distribution.  Besides the Gini index estimator given by (5), a bias-corrected estimator G
~  

proposed by Davidson (2010) was considered. In the table 2  the results for the Dagum distribution as 

a population model are presented.   

 

 

Table  1.  Characteristics of empirical distributions of Gini and Zenga inequality measures  under 

lognormal model 

Source: author’s calculations 

Sample 

size 

Gini index estimators Zenga index estimator 

Expected value Standard 

deviation 

Coeff. of 

skewness 

Expected 

value 

Standard 

deviation 

Coeff. of 

skewness 
 Ĝ  G

~
 

           Population A                          G=0,3286                    Z=0,3023 

100 0,3280 0,3313 0,0246 0,1699 0,3099 0,0403 0,3185 

500 0,3284 0,3291 0,0110 0,0821 0,3045 0,0183 0,1519 

1000 0,3286 0,3289 0,0078 0,0733 0,3038 0,0130 0,1311 

2000 0,3286 0,3288 0,0055 0,0802 0,3032 0,0092 0,1158 

3000 0,3286 0,3287 0,0045 0,0390 0,3029 0,0075 0,0576 

5000 0,3286 0,3287 0,0035 0,0388 0,3027 0,0057 0,0564 

           Population B                          G=0,3512 Z= 0,3395 

100 0,3504 0,3540 0,0264 0,1851 0,3466 0,0445 0,3123 

500 0,3509 0,3516 0,0119 0,0878 0,3417 0,0203 0,1541 

1000 0,3511 0,3515 0,0084 0,0727 0,3410 0,0144 0,1337 

2000 0,3512 0,3513 0,0060 0,0727 0,3404 0,0102 0,1192 

3000 0,3512 0,3513 0,0048 0,0383 0,3401 0,0083 0,0569 

5000 0,3512 0,3513 0,0037 0,0382 0,3399 0,0064 0,0546 

           Population C                          G=0,4041 Z=0,4302 

100 0,4029 0,4070 0,0308 0,2281 0,4357 0,0537 0,2812 

500 0,4040 0,4046 0,0139 0,0877 0,4322 0,0249 0,1580 

1000 0,4041 0,4044 0,0099 0,0925 0,4317 0,0178 0,1393 

2000 0,4041 0,4043 0,0070 0,0920 0,4312 0,0126 0,1268 

3000 0,4041 0,4042 0,0057 0,0394 0,4309 0,0103 0,0575 

5000 0,4041 0,4042 0,0044 0,0378 0,4307 0,0079 0,0532 

 

      The estimators of the Gini index present generally smaller bias, variance and asymmetry  than does 

the estimator of the Zenga index. The estimator Ĝ  underestimates the true value of the Gini index, 

while Ẑ  tends to overestimate the true value of Z.  It is worth mentioning that even for small samples,  

high concentration level and heavy-tailed Dagum density as underlying income distribution model, the 

relative bias of c is less than 1%. Bias-corrected estimator G
~  truly reduces the bias for the Dagum 

model, while for the lognormal overestimates the value in many cases.  
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Table  2.  Characteristics of empirical distributions of Gini and Zenga inequality measures under  

Dagum type-I model 

Source: author’s calculations 

Sample 

size 

Gini index estimators Zenga index estimator 

Expected value 
Standard 

deviation 

Coeff. of 

skewness 

Expected 

value 

Standard 

deviation 

Coeff. of 

skewness Ĝ  G
~

 

                       Population  A :                            G=0,3132                         Z=0,2907 

100 0,3122 0,3154 0,0283 0,6260 0,2957 0,0476 0,7319 

500 0,3127 0,3133 0,0130 0,3363 0,2919 0,0228 0,5084 

1000 0,3129 0,3132 0,0092 0,2309 0,2915 0,0163 0,3765 

2000 0,3130 0,3132 0,0064 0,1366 0,2911 0,0115 0,2947 

3000 0,3131 0,3132 0,0053 0,1561 0,2910 0,0096 0,2739 

5000 0,3132 0,3132 0,0041 0,0944 0,2910 0,0074 0,1953 

                       Population  B:                             G= 0,3514 Z=0,3540 

100 0,3493 0,3528 0,0359 1,0154 0,3548 0,0616 0,8497 

1000 0,3509 0,3513 0,0121 0,4626 0,3538 0,0227 0,5640 

2000 0,3511 0,3513 0,0085 0,3410 0,3538 0,0163 0,4557 

3000 0,3512 0,3513 0,0071 0,3411 0,3538 0,0136 0,4629 

5000 0,3513 0,3514 0,0055 0,2362 0,3538 0,0107 0,3515 

                       Population  C:                              G= 0,4006 Z=0,4410 

100 0,3970 0,4010 0,0430 1,1764 0,4354 0,0735 0,8697 

500 0,3992 0,4002 0,0212 1,0174 0,4379 0,0391 0,8215 

1000 0,3998 0,4002 0,0152 0,7418 0,4388 0,0289 0,6927 

2000 0,4001 0,4003 0,0109 0,6264 0,4393 0,0211 0,6451 

3000 0,4002 0,4004 0,0090 0,6276 0,4395 0,0177 0,6500 

5000 0,4004 0,4005 0,0070 0,4553 0,4398 0,0139 0,5178 

 
                          

 

Fig. 1. Empirical distribution of Gini index estimator under lognormal model  

(n=200) 

 
                                Source: author’s calculations 
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Fig. 2. Empirical distribution of Gini index estimator under Dagum model  

(n=200) 

 
                            Source: author’s calculations 

 

 

       For both inequality measures, the consistency with the normal distribution is high (more than 

95%), even for relatively small samples, when the underlying income distribution model is lognormal.   

For the Dagum model and n<2000, the discrepancies can be considered significant, especially when 

the concentration level increases. Figures 1 and 2 show relative frequency histograms obtained on the 

basis of 10 000 repetitions of the experiment for the estimator Ĝ  and sample sizes equal to 200. The 

histograms are accompanied by fitted normal density curves  and  their corresponding overlap 

measures .  

  

3. Conclusion 

 

The results of the simulation study can be useful in many practical applications in the field of income 

distribution and income inequality, especially in small area statistics where reliable estimates based on 

small samples are required.  Assuming the Dagum distribution as an appropriate income distribution 

model, confidence intervals for inequality measures (especially for subpopulations) should be based 

on bootstrap methods rather than the classical approach based on asymptotic normal distribution. 

        To complete the analysis,  similar experiments concerning the properties of relevant variance 

estimators should be considered. It would also be interesting to broaden the spectrum of populations  

to cover  the distributions of income components.     
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