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Abstract
Cluster analysis is a powerful tool for discovering sources of heterogeneity in data.

However, clinically interesting sources of heterogeneity, such as placebo-effects or specific
drug effects may be swamped out by other sources of variability in the data which can
cause a distribution to deviate from normality. This paper proposes linearly transform-
ing the data before clustering. An example of this is a canonical type transformation to
maximize between cluster variability relative to within cluster variability.

Keywords: B-splines, independent component analysis, k-means clustering, placebo ef-
fect.

1 Introduction

In functional data analysis, each individual data point produces a curve and the shape of
these curves can provide useful insight into the nature of the problem being studied. For
example, longitudinal outcome trajectories from a clinical trial shed light into the nature
of response to treatment (e.g. non-response, specific drug response, placebo response, or
combinations of these effects, etc.). Clustering the curves can allow for the identification of
prototypical response trajectories and hence identify clinically meaningful but yet distinct
types of outcomes to treatment. One of the driving motivations for this work is to identify
response trajectory shapes that can distinguish between subjects that respond due to spe-
cific effects of an active treatment (e.g. a drug) from subjects who respond primarily due
to nonspecific effects of treatment (which we shall call “placebo” effects).

The problem of clustering functional data has received a lot of attention in recent years
(Lipkovich et al., 2008; Luschgy and Pagés, 2002; Abraham et al., 2003; Tarpey and Kinat-
eder, 2003) A closely related approach is to fit finite mixture models to functional data
or growth mixture models (GMM) for longitudinal data (e.g. Muthén and Shedden, 1999;
James and Sugar, 2003). This paper focuses on non-hierarchical clustering methods, in
particular, variants of the well-known k-means algorithm (e.g. Hartigan and Wong, 1979).

A major shortcoming with k-mean-type algorithms is that the resulting partitions of
the data are often driven by the directions of primary variability in the data, regardless of
whether or not primary directions of variability correspond to distinct sub-populations or
continuous latent variables (e.g. degree of placebo response) that result in clinically inter-
esting heterogeneity in the population of interest. The existence of distinct sub-populations
and/or continuous latent variables will cause a distribution to deviate from multivariate
normality. Additionally, if the variability of these effects, which presumably are of primary
interest from a clinical perspective, are swamped by other sources of variability in the data
(e.g. degree of baseline disease severity among subjects), then clustering algorithms used
to discover this heterogeneity will likely miss these effects. For instance, the variability due
to the specific chemical effect of an active medication may be quite small in magnitude due
to other non-specific effects of treatment (e.g. Petkova et al., 2009).
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The approach described in this paper is to linearly transform the functional data to
maximize the between cluster variability relative to the within cluster variability. Closely
related to this approach are projection pursuit clustering methods (Bock, 1987; Bolton and
Krzanowski, 2003). More recently, Yatracos (2013) proposed a hierarchial clustering ap-
proach also based on projections that successively maximize a component of the variance
for one-dimensional projections of the data.

Consider a linear model for fitting a curve to an outcome vector yi using a design
matrix of basis functionsXi:

yi =Xiβi + εi. (1)

The functional data can be partitioned by clustering the estimated coefficients β̂i (Tarpey
and Kinateder, 2003). However, consider a nonsingular matrixA. Then the model in (1) is
identical to

yi = [XiA
−1][Aβi] + εi = Ziαi + εi, (2)

which can be regarded a modification of the basis representation of the functional observa-
tions. As noted by Tarpey (2007), k-means clustering the coefficients β̂i from (1) can lead
to quite different results than clustering the coefficients α̂i in (2) even though both models
produce identical fits. The goal of clustering then is to find a basis, or given a basis, a lin-
ear transformationA that will steer the k-means algorithm in a direction that will discover
true clusters or clinically relevant partitions of the data.

2 Canonical Transformation Clustering

Clustering functional data using the k-means algorithm will perform best if the linear
transformations used to fit the curves stretch the data in a direction that corresponds to
interesting sources of heterogeneity in the distribution, such existence of distinct clusters.
Because the algorithm iterates by assigning points to the cluster whose center is closest, the
optimization achieved by the algorithm is to find groupings that maximize the between
group sum-of-squares relative to minimizing the within group sum-of-squares.

Consider an arbitrary partitioning of the underlying distribution into k strata. Let µj

and Ψj denote the mean and covariance matrix respectively of the random regression
coefficients βi for the jth stratum and let πj denote the proportion of the population in the
stratum, j = 1, 2, . . . , k. The covariance matrix for the βi can be decomposed as

cov(βi) =W +B, (3)

where

W =
k∑

j=1

πjΨj and B =
k∑

j=1

πj(µj − µ)(µj − µ)′,

are the within cluster (or stratum) and the between cluster covariance matrices respectively
and whereµ =

∑k
j=1 πjµj . From (3) one can see that in order to optimize the k-means clus-

tering, a transformation should be used that minimizes the contribution of the within clus-
ter variability while maximizing the between cluster variability. A canonical discriminant
function is defined as “linear combinations of variables that best separate the mean vectors
of two or more groups of multivariate observations relative to the within-group variance”
(Rencher, 1993). In canonical discriminant analysis, transformations based on vectors aj
that successively maximize (a′jBaj)/(a

′
jWaj) are used. The solution is to choose the aj
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as the eigenvectors ofW−1B. A canonical transformation for clustering is now defined by
first linearly transforming the regression coefficient vector into Fisher’s canonical variates
followed by a stretching of the coefficient distribution to accent the between cluster vari-
ability and minimize the within cluster variability. In particular, consider a linear transfor-
mation that simultaneously diagonalizesW andB. Denote the spectral decomposition of
W−1/2BW−1/2 by HDH ′ where H is an orthogonal p × p matrix and W 1/2 is the sym-
metric square root of W . Let Γ = W−1/2H. Let the eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λp in
D be arranged from largest to smallest down the diagonal. Then from (3), the covariance
matrix of Γ′bwill be

I +D. (4)

In order to accent the between cluster variability and diminish the contribution of the
within cluster variability, one can further transform using a canonical transformation for
clustering

CΓ′b (5)

whereC = diag(c1, c2, . . . , cp) and the cj ≥ 0 are appropriately chosen constants. From (4),
the covariance matrix for the canonically transformed coefficients in (5) isC2+C2D. Thus,
choosing large values of cj corresponding to eigenvalues inD greater than one inflates the
between cluster variability relative to the within cluster variability of the canonically trans-
formed coefficients and setting cj = 0 for eigenvalues between zero and one minimizes the
contribution of the within cluster variability. For instance, suppose the cluster means lie on
a line. Then multiplying the positive eigenvalue λ1 in D by a large value of c1 transforms
the coefficient distribution by stretching it in the direction of the line containing the cluster
means. Consequently, the k-means algorithm will place cluster means along this line for
large values of c1. If the cluster means lie approximately in a q-dimensional plane, then
one would choose c1, . . . , cq to be large and the remaining cj to be small. The problem then
is to determine the optimal settings for the cj in order to optimize the k-means algorithm
according to minimizing a mean squared error or a classification error rate.

3 Illustration

This section illustrates linear transformations of the functional data based on independent
component analysis which attempts to find linear transformations via projections that de-
viate as much as possible from normality. Data from 12-week open-label acute phase of a
depression discontinuation trial with n = 429 subjects will be used to illustrate the meth-
ods. The outcome is a subject’s Hamilton Depression (Ham-D) score over the course of
the 12 week treatment with prozac (weeks 0, 1, 2, 3, 4, 5, 6, 8, 10, 11, and 12) where lower
scores correspond to lower levels of depression. B-splines (with a single knot) were used
to fit curves to individuals’ responses resulting in a p = 5 dimensional coefficient vector for
each subject. A crude check of normality of the coefficient distribution was performed by
running a Shapiro-Wilks test for normality for each of the five coefficient distribution and
none of these tests returned a p-value below 0.05. Given the large sample size, this would
provide some indication a multivariate normality assumption for the coefficient distribu-
tion is not unreasonable. However, an independent component analysis was performed
using the fastICA algorithm in R (R Development Core Team, 2009) to estimate an ICA
model (Hyvarinen and Oja, 2000), and the p-values for normality from the Shapiro-Wilks
test for three of the five independent components were extremely small (p < 0.00001).
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Figure 1: k = 3 cluster mean curves fit to the B-spline curves using the usual k-means al-
gorithm (left panel) and using the ICA clustering algorithm in the right panel. Individual-
level curves are plotted in grey.

Since ICA amounts to a linear transformation of the coefficient distribution, this distribu-
tion certainly appears to deviate from normality, which could be an indication of latent
categorical or continuous variables creating heterogeneity within the trajectory outcome
distribution. Figure 1 shows the results of a regular k-means clustering of the coefficients
in the left panel and an ICA-based clustering in the right panel. For the ICA-based clus-
tering, the 1st and 3rd independent components deviated strongly from normality (based
on a Shaprio-Wilks test) and hence the k-means algorithm was constrained to run in the
subspace spanned by these two independent components by inflating their variability (by
a factor of 100) compared to the remaining independent components.

At this point, a canonical clustering algorithm could be implemented to find optimal
choices of the stretching coefficients c3 and c4 to optimize the k-means algorithm in this
2-dimensional subspace. The cluster means from the usual k-means algorithm (left panel)
differ quite a bit from the ICA produced cluster means in the right panel. The cluster
mean trajectories in the right panel of Figure 1 show one curve (black) corresponding to
a steady improvement and eventual leveling off. The green curve shows an immediate
improvement, perhaps due to initial placebo effects, followed by a stronger improvement,
but then a deterioration in improvement perhaps indicating that initial benefits from the
active drug are not sustained. On the other hand, the red curve would correspond to indi-
viduals showing an initial improvement that levels off and then additional improvement
perhaps indicating that once the drug builds in the system, these individuals experience
specific drug effects that improve mood.

4 Biosignatures for Treatment Response

One of the primary motivations for the clustering methodology is to develop biosignatures
for treatment response. The idea here is once the clustering method has determined a par-
tition of the distribution of response trajectories, then baseline covariates can be used to
develop predictive models of whether or not subjects are likely to fall into one cluster or
another based on these baseline measures. If particular clusters correspond predominately
to placebo responders or specific drug responders and baseline measures, or some com-
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bination of these measures, can be used to predict cluster membership, and hence act as
biosigatures of treatment response. The ultimate goal is to implement this methodology to
high dimensional predictors such as brain-imaging scans and genetic data.

5 Discussion

This paper has examined how modifying the basis functions used to fit functional data via
linear transformations of the coefficient distribution can lead to cluster solutions that can
discover interesting heterogeneity in functional data that a straightforward cluster analysis
may miss. Anticipated improvements to this work are to utilize subject specific random
effects in additional to fitting curves using penalized splines on both the fixed effect mean
curve and the individual subject-specific random effect components of the curves (e.g.
Chen and Wang, 2011). Another interesting question when clustering functional data to be
explored is: How much structure in the curves does one need to extract in order to capture
meaningful partitions when clustering curves? In other words, if the clusters of curves are
distinguished simply by their intercepts, then we do not need to fit curves to the data at
all, but just need to cluster the mean outcomes for each curve. Similarly, if the clusters are
distinguished by their linear trends, regardless of the curvature in the trajectories, then we
can obtain useful results by simply fitting straight lines to the data and clustering the lines.

Additional work will also address the question of finding linear transformations that
maximize the R2 for clustering where

R2 = 1− within sum-of-squares
total sum-of-squares

,

where the within and total sum-of-squares are from a k-means clustering. Preliminary
results indicate that the optimal linear transformation is to simply project the data onto a
one-dimensional subspace. The optimality of a one-dimensional projection likely follows
due to the curse of dimensionality where points become further and further away from
cluster centers as the dimension increases.
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