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Abstract

A model selection criterion based on a divergence or discrepancy measure is generally comprised of a
goodness-of-fit term and a penalty term. The penalty term, which reflects model complexity, serves as an
estimate of a quantity known as the expected optimism. Classical approaches to approximating the expected
optimism often lead to simplistic penalizations. However,such approaches usually involve stringent assump-
tions that may fail to hold in practical applications. Modern computational statistical methods facilitate the
development of improved estimators of the expected optimism. Selection criteria based on such penalty
terms often provide more realistic measures of predictive efficacy than their classical counterparts, thereby
resulting in superior model determinations. To survey thismethodology, we outline the general framework
for discrepancy-based model selection criteria, and review computationally intensive approaches for evalu-
ating complexity penalizations.
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1. Introduction

A model selection criterion is often formulated by constructing an approximately unbiased estimator of
anexpected discrepancy, a measure that gauges the separation between the true modeland a fitted candidate
model. The expected discrepancy reflects how well, on average, the fitted candidate model predicts “new”
data generated under the true model. A related measure, theestimated discrepancy, reflects how well the
fitted candidate model predicts the data at hand.

In general, a model selection criterion consists of a goodness-of-fit term and a penalty term. The natural
estimator of the expected discrepancy, the estimated discrepancy, corresponds to the goodness-of-fit term.
However, the estimated discrepancy yields an overly optimistic assessment of how effectively the fitted
model predicts new data. It therefore serves as a negativelybiased estimator of the expected discrepancy.
Correcting for this bias leads to the penalty term. Specifically, the penalty term provides an approximation to
the expectation of the difference between the expected discrepancy and the estimated discrepancy, a measure
known as theexpected optimism.

Classical approaches to approximating the expected optimism often lead to simplistic penalty terms
based on the dimension of the fitted candidate model and possibly the sample size. However, such ap-
proaches generally involve large-sample arguments, restrictive assumptions on the form of the candidate
model, or both. The resulting penalty terms may fail to perform adequately in small-sample applications or
in settings where the requisite assumptions do not hold.

Modern computational statistical methods, such as Monte Carlo simulation, bootstrapping, and cross
validation, facilitate the development of flexible and accurate estimators of the expected optimism. Model
selection criteria based on such penalty terms often provide more realistic measures of predictive efficacy
than their classical counterparts, thereby resulting in superior model determinations.

In this note, we review the general paradigm for discrepancy-based model selection criteria, and discuss
computationally intensive approaches to approximating the expected optimism.
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2. Discrepancy-based selection criteria

Consider a collection ofn response measurementsY = {y1, . . . ,yn}, where theyi ’s may be scalars or
vectors, often assumed to be independent. LetM o denote the unknown “true” model; i.e., the model that
presumably generates the sampleY.

Suppose that a parametric model is postulated forY. Let θ denote the parameter vector for the model,
and letM θ denote the candidate model. Letk denote the dimension of the candidate model: i.e., the number
of functionally independent parameters inθ.

The quality of the candidate modelM θ can be gauged by determining whether this model may be used
to formulate accurate predictors of data generated under the true modelM o. Consider a measureδ(Y,θ)
that assesses the effectiveness of modelM θ in predicting the dataY. Suppose thatδ(Y,θ) is defined so that
smaller values ofδ(Y,θ) are reflective of greater predictive efficacy. We will refer to δ(Y,θ) as theobserved
discrepancy.

Once the observed discrepancy is defined, we may propose an estimator ofθ based on minimizing this
measure:

θ̂ = argminθ δ(Y,θ).

Such an estimator is called aminimum discrepancy estimator(MDE).
By replacingθ with θ̂ in δ(Y,θ), we obtain a statisticδ(Y, θ̂) known as theestimated discrepancy. The

estimated discrepancy evaluates the predictive effectiveness of the fitted modelM θ̂ based on the data used in
its own construction. This statistic may be viewed as a goodness-of-fit measure forM θ̂. Comparing values
of the statistic for various fitted models may facilitate theidentification of models that are too simplistic to
accommodate the data at hand. However,δ(Y, θ̂) will always decrease as the complexity of the candidate
modelM θ is increased. Thus, choosing the fitted model in a candidate family that minimizes the estimated
discrepancy will invariably result in selecting the most complex candidate model.

Obviously, the problem with the measureδ(Y, θ̂) is that it leads to an overly optimistic assessment of
predictive efficacy, one that is solely based on the conformity of the fitted modelM θ̂ to the data used to fit
the model. In principle, suppose that we could circumvent this problem by collecting a complete set ofn
new measurements on the response variable, sayZ = {z1, . . . ,zn}, and assessing the predictive effectiveness
of M θ̂ based on the dataZ as opposed to the dataY. The measureδ(Z, θ̂) could be used for this purpose. We
could then viewY as afitting sample, andZ as avalidation sample. We will refer toδ(Z, θ̂) as thevalidatory
discrepancy.

Theexpected discrepancy, also known as theexpected divergence, is defined as

∆(M o,M θ) = E
{

δ(Z, θ̂)
}
, (1)

where E(·) denotes the expectation under the true modelM o. This measure reflects how well, on average,
a fitted candidate model of the formM θ predicts new data generated under the true modelM o. Since
∆(M o,M θ) is based on averaging over the distributions of bothY andZ, the measure does not depend on
data, but rather on constructs pertaining to both the true modelM o and the candidate modelM θ.

By comparing values of the expected discrepancy for variousfitted models in a candidate family, one
would be able to determine the optimal model structure. However, since the measure∆(M o,M θ) depends
on the true modelM o, it is inaccessible.

Model selection criteria are often formulated by constructing approximately unbiased estimators of the
expected discrepancy. The definition (1) implies thatδ(Z, θ̂) could be used to estimate∆(M o,M θ) without
bias, yet rarely is a validation sampleZ actually available. A more pragmatic goal is to use the fit measure
δ(Y, θ̂) as a platform for estimating∆(M o,M θ), recognizing thatδ(Y, θ̂) will be inherently biased, and to
formulate a bias adjustment forδ(Y, θ̂).
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To investigate this approach, consider writing∆(M o,M θ) as follows:

∆(M o,M θ) = E
{

δ(Y, θ̂)
}

+
[
E
{

δ(Z, θ̂)−δ(Y, θ̂)
}]

. (2)

The bracketed quantity (2) is often referred to as theexpected optimismin judging the fit of a model using
the same data as that which was used to construct the fit (Efron, 1983, 1986). The expected optimism is
positive, implying thatδ(Y, θ̂) is negatively biased as an estimator of∆(M o,M θ). In order to correct for the
negative bias, we must evaluate or approximate the bias adjustment represented by the expected optimism.

Such a bias correction, saŷeo, is then added to the estimated discrepancyδ(Y, θ̂) to produce an approx-
imately unbiased estimator of the expected discrepancy∆(M o,M θ):

δ(Y, θ̂)+ êo. (3)

The statisticδ(Y, θ̂)+ êo may then be used as a model selection criterion: among a candidate collection of
fitted models, the fitted model corresponding to the smallestvalue ofδ(Y, θ̂)+ êo should be favored.

Simple approximations tôeo can often be found by employing the following assumptions:

(A.1) The sample sizen is large relative to the dimension of the candidate modelk.

(A.2) The true modelM o is subsumed by the candidate modelM θ, so that the fitted modelM θ̂ is
either correctly specified or overfit.

Mathematically, assumption (A.1) often translates to the use of asymptotic results for the minimum discrep-
ancy estimator̂θ that hold in the limit asn approaches infinity, provided that the candidate model dimension
k is assumed fixed. For certain discrepancies, under assumptions (A.1) and (A.2), the expected optimism
can be approximated by a simple function ofk. (See, for example, Theorem 2.4 of Mattheou, Lee, and
Karagrigoriou, 2009.) In fact, in some instances, the expected optimism asymptotically reduces to a multi-
ple of k, as shown in section 2.4 of Linhart and Zucchini (1986). Sucha simplification leads to the penalty
terms of the Akaike (1973, 1974) information criterion (AIC) and Mallow’s (1973) Cp. See also Linhart and
Zucchini (1985) and Cavanaugh (1999).

Variable selection methods have been extensively studied in the framework of Gaussian linear regres-
sion. In such a framework, under only assumption (A.2), exact expressions for the expected optimism that
only depend onk andn can be derived for certain discrepancies. Examples may be found in Sugiura (1978)
and Cavanaugh (2004).

Assumptions (A.1) and (A.2) lead to model selection criteria based on simplistic penalty terms that
are easily computed. However, in settings where (A.1) or (A.2) are violated, such a penalty term may
provide a poor approximation to the expected optimism, leading to a selection criterion that serves as an
inferior estimator of the expected discrepancy. As a result, the selection criterion might choose a model
in a candidate collection which is quite different from the model that would be favored by the expected
discrepancy. Simulation studies that illustrate this phenomenon appear in Hurvich and Tsai (1989), Hurvich,
Shumway, and Tsai (1990), Cavanaugh and Shumway (1997), Cavanaugh (2004), and Kim and Cavanaugh
(2005).

As previously mentioned, modern computational statistical methods, such as Monte Carlo simulation,
bootstrapping, and cross validation, facilitate the development of flexible and accurate estimators of the
expected optimism. Specifically, estimators based on MonteCarlo simulation may be developed by relaxing
the large-sample assumption (A.1), and estimators based onbootstrapping and cross-validation may be
developed by relaxing both (A.1) and the model specificationassumption (A.2). Model selection criteria
featuring such penalty terms often provide more realistic measures of predictive efficacy than their classical
counterparts. In the next section, we discuss these approaches.
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3. Computationally intensive estimators of the expected optimism

3.1 Monte-Carlo simulation

Consider a discrepancy where under assumptions (A.1) and (A.2), the expected optimism can be ap-
proximated by a simple function ofk and possiblyn. Such a result implies that the expected optimism does
not depend on the form of the true modelM o for correctly specified or overspecified candidate models, at
least when the sample size is large. If the sample size is small or moderate, it may therefore follow that the
expected optimism may only depend loosely on the form of the true model. Based on this notion, Hurvich,
Shumway, and Tsai (1990) proposed an “improved” Akaike information criterion, AICi, where the estima-
tor of the expected optimism is based on Monte Carlo simulation. (See also Kim and Cavanaugh, 2005,
and Bengtsson and Cavanaugh, 2006.) Although the development of AICi arises from the use of Kullback’s
directed divergence as the targeted discrepancy, the idea behind the criterion may be extended to any other
discrepancy where the preceding result applies.

Consider a collection of candidate models and a sample sizen. The computation of the Monte Carlo
estimate of the expected optimism proceeds as follows.

1. Identify the smallest model in the candidate collection.For this candidate model structure, choose
a convenient, fixed value for the parameter vectorθ. Let M f denote the model based on this fixed
parameter vector.

2. Use the modelM f to generate multiple fitting samplesY(1), . . . ,Y(R) and multiple validation samples
Z(1), . . . ,Z(R).

3. For a given candidate model structureM θ, obtain MDE replicateŝθ(1), . . . , θ̂(R) using the fitting
samplesY(1), . . . ,Y(R).

4. Compute the estimate of the expected optimism as follows:

êo=
1
R

R

∑
i=1

{
δ(Z(i), θ̂(i))−δ(Y(i), θ̂(i))

}
.

5. Repeat steps (2) through (4) for each candidate model structure under consideration, thereby obtaining
a penalization for every model in the candidate collection.

The resulting penalizations may be tabulated and used for any set of fitted models from the candidate
family based on the sample sizen. Model selection criteria may then be constructed by augmenting the
goodness-of-fit statistics with these penalizations, as indicated in (3).

In smaller sample settings, simulation results demonstrate that model selection criteria based on the
preceding approach outperform their classical counterparts; see, for instance, Hurvich, Shumway, and Tsai
(1990), Kim and Cavanaugh (2005), and Bengtsson and Cavanaugh (2006). In such settings, simplistic
penalty terms derived under (A.1) and (A.2) grossly underestimate the expected optimism for the larger
models in the candidate collection. As a result, selection criteria with simplistic penalizations favor larger
models, even when the expected discrepancy indicates that such models have poor predictive capabilities. In
contrast, criteria with Monte Carlo penalizations provideimproved estimators of the expected discrepancy,
leading to more parsimonious model selections that better reflect the values of the target measure.

The Monte Carlo approach relaxes the large-sample assumption (A.1) often employed in the develop-
ment of simplistic penalty terms. However, the justification of this approach depends on the model speci-
fication assumption (A.2). Bootstrapping and cross validation have been used to develop estimators of the
expected optimism that relax both (A.1) and (A.2). Next, we outline these approaches.
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3.2 Bootstrapping

The idea of using the bootstrap to improve the performance ofa model selection rule was introduced
by Efron (1983, 1986). To present the basic approach, let{Y∗(i) | i = 1, . . . ,B} represent a collection
of B bootstrap samples, and let{θ̂∗(i) | i = 1, . . . ,B} represent a collection ofB bootstrap replicates of̂θ
corresponding to theB bootstrap samples.

The bootstrap estimator of the expected optimism is based onthe familiar “plug–in” principle. The
estimator is given by

êo=
1
B

B

∑
i=1

{
δ(Y, θ̂∗(i))−δ(Y∗(i), θ̂∗(i))

}
.

In comparing the preceding to (2), note thatY plays the role of the validation sample and a bootstrap sample
Y∗ plays the role of the fitting sample. The discrepancyδ(Y∗(i), θ̂∗(i)) evaluates the predictive effectiveness
of the θ̂∗(i) fitted model based on the dataY∗(i) used to fit the model. In the discrepancyδ(Y, θ̂∗(i)), the
predictive effectiveness of thêθ∗(i) model is assessed using the original dataY.

Standard bootstrapping procedures require that the data tobe resampled consists of independent, iden-
tically distributed (iid) replicates. For modeling problems where theyi ’s are assumed independent and a set
of potential covariatesXi is associated with each outcomeyi , a multivariate distribution is often assumed for
the pairs(yi ,Xi). The variates(yi ,Xi) can then be viewed as iid replicates arising from the multivariate dis-
tribution, and can be randomly drawn with replacement to construct the bootstrap samples. This approach
is referred to asnonparametricbootstrapping.

If a model is fit to the data and the residuals are obtained, thebootstrap samples are sometimes con-
structed by resampling the residuals, and assembling the bootstrap samples based on using the resampled
residuals in conjunction with the fitted model. If the residuals are resampled by taking random draws with
replacement from the residuals for the original model fit, the procedure is calledsemi-parametric. If the
residuals are resampled by generating random samples from an assumed parametric distribution, the proce-
dure is calledparametric.

In the present context, nonparametric bootstrapping is arguably the most natural procedure, since this
method does not require the use of a fitted model. However, in settings where theyi are dependent, such
as time series applications, a semi-parametric or nonparametric approach might be necessary, since the
residuals can often be assumed iid whereas the original datacannot.

3.3 Cross validation

Stone (1977) proposed an analogue of AIC based on cross validation and established the asymptotic
equivalence of AIC and this cross validatory analogue. Further work on this criterion appears in Davies,
Neath, and Cavanaugh (2005), Cavanaugh, Davies, and Neath (2008), and Konishi and Kitagawa (2008).
A comprehensive survey of cross-validatory methods for model selection is presented by Arlot and Celisse
(2010).

To outline the cross validatory approach to estimation of the expected optimism, assume thaty1, . . . ,yn

are independent. In such a setting, the observed discrepancy δ(Y,θ) can often be decomposed into the sum of
n individual contributionsδ1(y1,θ), . . . ,δn(yn,θ), where each contributionδi(yi ,θ) corresponds to a specific
observationyi :

δ(Y,θ) =
n

∑
i=1

δi(yi ,θ).

For example, ifδ(Y,θ) represents the negative log-likelihood forθ based on the dataY (i.e., the negative
of the log of the joint density ofY), thenδi(yi ,θ) would represent the negative log-likelihood contribution
corresponding toyi (i.e., the negative of the log of the marginal density ofyi). If δ(Y,θ) represents the sum
of the squared deviations between the observations and their mean values under the candidate modelM θ,
thenδi(yi ,θ) would represent the specific squared deviation for theith observationyi .
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LetY[i] denote the data setY with theith caseyi excluded. Let̂θ[i] denote an estimator ofθ based onY[i].
Often,Y[i] is referred to as thecase-deleted data set, and the fitted model based onθ̂[i] as thecase-deleted
fitted model.

Recall the general definition of the expected optimism:

E
{

δ(Z, θ̂)−δ(Y, θ̂)
}
.

Under suitable conditions, the cross-validatory statistic
n

∑
i=1

δi(yi , θ̂[i])

serves as an asymptotically unbiased estimator of E
{

δ(Z, θ̂)
}
. Thus, a cross-validatory estimator of the

expected optimism is given by

êo=

(
n

∑
i=1

δi(yi , θ̂[i])

)
−

(
n

∑
i=1

δi(yi , θ̂)

)
. (4)

The preceding result is established in Chapter 10 of Konishiand Kitagawa (2008). (See also Cavanaugh,
Davies, and Neath (2008).) In (4), note that the estimated discrepancy

δ(Y, θ̂) =
n

∑
i=1

δi(yi , θ̂)

serves as an estimator of its own expected value.
The model selection criterion based on the penalty term (4) is given by

δ(Y, θ̂)+ êo =
n

∑
i=1

δi(yi , θ̂)

+

[(
n

∑
i=1

δi(yi , θ̂[i])

)
−

(
n

∑
i=1

δi(yi , θ̂)

)]

=
n

∑
i=1

δi(yi , θ̂[i]). (5)

In general, the evaluation of (5) requiresn case-deleted model fits. However, in the context of Gaussian
linear models, certain discrepancies will lead to contributions δi(yi , θ̂[i]) that may be computed based only
on the original model fit.
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