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Abstract

A model selection criterion based on a divergence or disgcrep measure is generally comprised of a

goodness-of-fit term and a penalty term. The penalty terniciwieflects model complexity, serves as an

estimate of a quantity known as the expected optimism. €lsspproaches to approximating the expected
optimism often lead to simplistic penalizations. Howegeich approaches usually involve stringent assump-
tions that may fail to hold in practical applications. Mod@&omputational statistical methods facilitate the

development of improved estimators of the expected optmiSelection criteria based on such penalty

terms often provide more realistic measures of predictifieagy than their classical counterparts, thereby
resulting in superior model determinations. To survey th&thodology, we outline the general framework

for discrepancy-based model selection criteria, and weegmputationally intensive approaches for evalu-

ating complexity penalizations.
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1. Introduction

A model selection criterion is often formulated by consting an approximately unbiased estimator of
anexpected discrepancg measure that gauges the separation between the true anddefitted candidate
model. The expected discrepancy reflects how well, on aeetthg fitted candidate model predicts “new”
data generated under the true model. A related measurestimeated discrepancyeflects how well the
fitted candidate model predicts the data at hand.

In general, a model selection criterion consists of a gosshud-fit term and a penalty term. The natural
estimator of the expected discrepancy, the estimatedegliaocy, corresponds to the goodness-of-fit term.
However, the estimated discrepancy yields an overly optimassessment of how effectively the fitted
model predicts new data. It therefore serves as a negativabed estimator of the expected discrepancy.
Correcting for this bias leads to the penalty term. Spedifidhe penalty term provides an approximation to
the expectation of the difference between the expectedegiancy and the estimated discrepancy, a measure
known as thexpected optimism

Classical approaches to approximating the expected atinoiften lead to simplistic penalty terms
based on the dimension of the fitted candidate model andhppdbie sample size. However, such ap-
proaches generally involve large-sample arguments,ictagr assumptions on the form of the candidate
model, or both. The resulting penalty terms may fail to penf@adequately in small-sample applications or
in settings where the requisite assumptions do not hold.

Modern computational statistical methods, such as MonwoGamulation, bootstrapping, and cross
validation, facilitate the development of flexible and aete estimators of the expected optimism. Model
selection criteria based on such penalty terms often peowidre realistic measures of predictive efficacy
than their classical counterparts, thereby resulting pesar model determinations.

In this note, we review the general paradigm for discrepdased model selection criteria, and discuss
computationally intensive approaches to approximatimgetkpected optimism.
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2. Discrepancy-based selection criteria

Consider a collection ofi response measurememts= {y1,...,y¥n}, where they,'s may be scalars or
vectors, often assumed to be independent. dcgtdenote the unknown “true” model; i.e., the model that
presumably generates the samyle

Suppose that a parametric model is postulatedr/foLet 6 denote the parameter vector for the model,
and letarg denote the candidate model. lketienote the dimension of the candidate model: i.e., the numbe
of functionally independent parametersiin

The quality of the candidate modefg can be gauged by determining whether this model may be used
to formulate accurate predictors of data generated undetrtie modek/,. Consider a measu&Y, 0)
that assesses the effectiveness of madgin predicting the daty. Suppose thak(Y, 0) is defined so that
smaller values od(Y, 8) are reflective of greater predictive efficacy. We will refedtY, 0) as theobserved
discrepancy

Once the observed discrepancy is defined, we may proposdiamats of 6 based on minimizing this
measure:

6 = argmin 5(Y, 8).

Such an estimator is callednainimum discrepancy estimat@viDE).

By replacing® with 8 in 3(Y,8), we obtain a statisti&(Y,8) known as theestimated discrepancyrhe
estimated discrepancy evaluates the predictive effews® of the fitted model s based on the data used in
its own construction. This statistic may be viewed as a gesshof-fit measure farz. Comparing values
of the statistic for various fitted models may facilitate ttientification of models that are too simplistic to
accommodate the data at hand. Howew€y, é) will always decrease as the complexity of the candidate
modelarg is increased. Thus, choosing the fitted model in a candidabdyf that minimizes the estimated
discrepancy will invariably result in selecting the mostgaex candidate model.

Obviously, the problem with the measuséy, é) is that it leads to an overly optimistic assessment of
predictive efficacy, one that is solely based on the configrofithe fitted modeb/y to the data used to fit
the model. In principle, suppose that we could circumveist plnoblem by collecting a complete set rof
new measurements on the response variableZsayz,...,z,}, and assessing the predictive effectiveness
of a3 based on the dafaas opposed to the daYa The measuré(Z,é) could be used for this purpose. We
could then viewy as dfitting sampleandZ as avalidation sampleWe will refer tod(Z, é) as thevalidatory
discrepancy

Theexpected discrepancglso known as thexpected divergencés defined as

A(Mo,Me) = E{5(Z,0)}, (1)

where E-) denotes the expectation under the true madgl This measure reflects how well, on average,
a fitted candidate model of the forarg predicts new data generated under the true madgl Since
A(Mo, M) is based on averaging over the distributions of BothndZ, the measure does not depend on
data, but rather on constructs pertaining to both the trugetya, and the candidate modef.

By comparing values of the expected discrepancy for variitiezl models in a candidate family, one
would be able to determine the optimal model structure. Hewesince the measury #,, M) depends
on the true modelds,, it is inaccessible.

Model selection criteria are often formulated by consingcepproximately unbiased estimators of the
expected discrepancy. The definition (1) implies @@, é) could be used to estimat #,, Mg) without
bias, yet rarely is a validation sameactually available. A more pragmatic goal is to use the fit snea
3(Y,6) as a platform for estimating (4o, #g), recognizing thad(Y,8) will be inherently biased, and to
formulate a bias adjustment fofY, é).
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To investigate this approach, consider writihg,, M) as follows:

A(Mo, Me) = E{(Y,0)}
+[E{5(2,6) - 5(Y,8)}]. 2)

The bracketed quantity (2) is often referred to asekpected optimisnm judging the fit of a model using
the same data as that which was used to construct the fit (Ef@88, 1986). The expected optimism is
positive, implying thad(Y, é) is negatively biased as an estimatoXgfi/,, 4g). In order to correct for the
negative bias, we must evaluate or approximate the biastatunt represented by the expected optimism.

Such a bias correction, s&yp, is then added to the estimated discrepaiﬁlt’yé) to produce an approx-
imately unbiased estimator of the expected discrep&ioy,, Mg):

3(Y,8)+éa ®3)

The statistiod(Y, é) + €0 may then be used as a model selection criterion: amongdéded collection of
fitted models, the fitted model corresponding to the smallaste ofd(Y, 0) + €o should be favored.
Simple approximations téo can often be found by employing the following assumptions

(A.1) The sample sizais large relative to the dimension of the candidate madel

(A.2) The true modeb/, is subsumed by the candidate modé), so that the fitted modeiry is
either correctly specified or overfit.

Mathematically, assumption (A.1) often translates to the af asymptotic results for the minimum discrep-
ancy estimatoB that hold in the limit as approaches infinity, provided that the candidate model dgioa

k is assumed fixed. For certain discrepancies, under assaamafth.1) and (A.2), the expected optimism
can be approximated by a simple functionkof (See, for example, Theorem 2.4 of Mattheou, Lee, and
Karagrigoriou, 2009.) In fact, in some instances, the etgeoptimism asymptotically reduces to a multi-
ple ofk, as shown in section 2.4 of Linhart and Zucchini (1986). Saisimplification leads to the penalty
terms of the Akaike (1973, 1974) information criterion (Al&hd Mallow’s (1973) G. See also Linhart and
Zucchini (1985) and Cavanaugh (1999).

Variable selection methods have been extensively studi¢de framework of Gaussian linear regres-
sion. In such a framework, under only assumption (A.2), egapressions for the expected optimism that
only depend ork andn can be derived for certain discrepancies. Examples maywelfm Sugiura (1978)
and Cavanaugh (2004).

Assumptions (A.1) and (A.2) lead to model selection cradsased on simplistic penalty terms that
are easily computed. However, in settings where (A.1) oR)Are violated, such a penalty term may
provide a poor approximation to the expected optimism,ifeatb a selection criterion that serves as an
inferior estimator of the expected discrepancy. As a resiét selection criterion might choose a model
in a candidate collection which is quite different from thedel that would be favored by the expected
discrepancy. Simulation studies that illustrate this ime@non appear in Hurvich and Tsai (1989), Hurvich,
Shumway, and Tsai (1990), Cavanaugh and Shumway (1997an@agh (2004), and Kim and Cavanaugh
(2005).

As previously mentioned, modern computational statisticethods, such as Monte Carlo simulation,
bootstrapping, and cross validation, facilitate the dgwelent of flexible and accurate estimators of the
expected optimism. Specifically, estimators based on MGat® simulation may be developed by relaxing
the large-sample assumption (A.1), and estimators basdubotstrapping and cross-validation may be
developed by relaxing both (A.1) and the model specificaissumption (A.2). Model selection criteria
featuring such penalty terms often provide more realiseasures of predictive efficacy than their classical
counterparts. In the next section, we discuss these apgmeac
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3. Computationally intensive estimator s of the expected optimism

3.1 Monte-Carlo simulation

Consider a discrepancy where under assumptions (A.1) ar), (e expected optimism can be ap-
proximated by a simple function &fand possiblyn. Such a result implies that the expected optimism does
not depend on the form of the true modl}, for correctly specified or overspecified candidate modéls, a
least when the sample size is large. If the sample size id sm@oderate, it may therefore follow that the
expected optimism may only depend loosely on the form ofilve tnodel. Based on this notion, Hurvich,
Shumway, and Tsai (1990) proposed an “improved” Akaikerimfation criterion, AICi, where the estima-
tor of the expected optimism is based on Monte Carlo sinarati(See also Kim and Cavanaugh, 2005,
and Bengtsson and Cavanaugh, 2006.) Although the devetdmhalCi arises from the use of Kullback’s
directed divergence as the targeted discrepancy, the &lgadthe criterion may be extended to any other
discrepancy where the preceding result applies.

Consider a collection of candidate models and a samplensiZéhe computation of the Monte Carlo
estimate of the expected optimism proceeds as follows.

1. Identify the smallest model in the candidate collectiéior this candidate model structure, choose
a convenient, fixed value for the parameter ve€tol_et 4/ denote the model based on this fixed
parameter vector.

2. Use the modei; to generate multiple fitting sampl&g1),...,Y(R) and multiple validation samples
Z(1),....Z2(R).

3. For a given candidate model structurg, obtain MDE replicate$(1),...,8(R) using the fitting
samplesr(1),...,Y(R).

4. Compute the estimate of the expected optimism as follows:

5. Repeat steps (2) through (4) for each candidate modetsteuunder consideration, thereby obtaining
a penalization for every model in the candidate collection.

The resulting penalizations may be tabulated and used fosetnof fitted models from the candidate
family based on the sample sime Model selection criteria may then be constructed by augimghe
goodness-of-fit statistics with these penalizations, dis#@ted in (3).

In smaller sample settings, simulation results demorsstizt model selection criteria based on the
preceding approach outperform their classical counte&spsee, for instance, Hurvich, Shumway, and Tsai
(1990), Kim and Cavanaugh (2005), and Bengtsson and Cagan@006). In such settings, simplistic
penalty terms derived under (A.1) and (A.2) grossly undemede the expected optimism for the larger
models in the candidate collection. As a result, selectiiteréa with simplistic penalizations favor larger
models, even when the expected discrepancy indicatesutiansodels have poor predictive capabilities. In
contrast, criteria with Monte Carlo penalizations provihgroved estimators of the expected discrepancy,
leading to more parsimonious model selections that begterat the values of the target measure.

The Monte Carlo approach relaxes the large-sample assam@#il) often employed in the develop-
ment of simplistic penalty terms. However, the justificataf this approach depends on the model speci-
fication assumption (A.2). Bootstrapping and cross valdahave been used to develop estimators of the
expected optimism that relax both (A.1) and (A.2). Next, wéioe these approaches.
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3.2 Bootstrapping

The idea of using the bootstrap to improve the performance mbdel selection rule was introduced
by Efron (1983, 1986). To present the basic approach{¥Yéti) | i = 1,...,B} represent a collection
of B bootstrap samples, and I{a@*(i) | i=1,...,B} represent a collection d bootstrap replicates ]
corresponding to thB bootstrap samples.

The bootstrap estimator of the expected optimism is basethefamiliar “plug—in” principle. The
estimator is given by

B A~ -~
60— é_Z{é(Y, 8 (1)) — 5(Y*(1).8°(1)))}.

In comparing the preceding to (2), note thgplays the role of the validation sample and a bootstrap sampl
Y* plays the role of the fitting sample. The discrepad€y*(i),6%(i)) evaluates the predictive effectiveness
of the &*(i) fitted model based on the dat4(i) used to fit the model. In the discrepandgy,*(i)), the
predictive effectiveness of trﬁé‘(i) model is assessed using the original data

Standard bootstrapping procedures require that the déta tesampled consists of independent, iden-
tically distributed (iid) replicates. For modeling probile where the;’s are assumed independent and a set
of potential covariate; is associated with each outcoiyiea multivariate distribution is often assumed for
the pairs(y;, X). The variatesy;, X;) can then be viewed as iid replicates arising from the muit@ dis-
tribution, and can be randomly drawn with replacement tostroct the bootstrap samples. This approach
is referred to amonparametridoootstrapping.

If a model is fit to the data and the residuals are obtainedbtimstrap samples are sometimes con-
structed by resampling the residuals, and assembling tbistbap samples based on using the resampled
residuals in conjunction with the fitted model. If the resitbuare resampled by taking random draws with
replacement from the residuals for the original model fig pnocedure is calledemi-parametric If the
residuals are resampled by generating random samples frassamed parametric distribution, the proce-
dure is callecparametric

In the present context, nonparametric bootstrapping isadnly the most natural procedure, since this
method does not require the use of a fitted model. Howevegtiings where thg; are dependent, such
as time series applications, a semi-parametric or nongaremmapproach might be necessary, since the
residuals can often be assumed iid whereas the originakdatzot.

3.3 Cross validation

Stone (1977) proposed an analogue of AIC based on crossatraiidand established the asymptotic
equivalence of AIC and this cross validatory analogue. Heurtvork on this criterion appears in Davies,
Neath, and Cavanaugh (2005), Cavanaugh, Davies, and N&#iB)( and Konishi and Kitagawa (2008).
A comprehensive survey of cross-validatory methods forehedlection is presented by Arlot and Celisse
(2010).

To outline the cross validatory approach to estimation efdékpected optimism, assume that. ..y,
are independent. In such a setting, the observed discrgpén®) can often be decomposed into the sum of
nindividual contributions;(y1,0),...,0n(Yn,0), where each contributiod (y;, ) corresponds to a specific
observationy;:

B(1.6) = 5 5(3.9).

For example, if3(Y,0) represents the negative log-likelihood fbased on the dafé (i.e., the negative
of the log of the joint density oY), thend;(y;,0) would represent the negative log-likelihood contribution
corresponding tg; (i.e., the negative of the log of the marginal density0f If 5(Y,0) represents the sum
of the squared deviations between the observations andntiggin values under the candidate maule|
thend; (y;,8) would represent the specific squared deviation foithebservatiory;.



Proceedings 59th 19 World Statistics Congress, 25-30 August 2013, Hong Kong (Session IPS012) p.132

LetY [i] denote the data s¥twith theit" casey; excluded. LeB[i] denote an estimator 6fbased orY|i].
Often, Y[i] is referred to as thease-deleted data setnd the fitted model based 6fi] as thecase-deleted
fitted model

Recall the general definition of the expected optimism:

E{5(2,8) - 5(v,0)}.
Under suitable conditions, the cross-validatory statisti

_iamﬁm

serves as an asymptotically unbiased estimator {Zﬂ(E,é)}. Thus, a cross-validatory estimator of the
expected optimism is given by

0= (i& (ybé[i])) - (i&(yi,é)) : (4)

The preceding result is established in Chapter 10 of Korasli Kitagawa (2008). (See also Cavanaugh,
Davies, and Neath (2008).) In (4), note that the estimatsctejpancy

B(1.8) = 5 5.9

serves as an estimator of its own expected value.
The model selection criterion based on the penalty terms(divien by

~

5(Y,0)+éo0 = _iéi(Yhé)

Qiamﬁm>—<i&mﬁ0]

:_iamﬁm. (5)

_|_

In general, the evaluation of (5) requinesase-deleted model fits. However, in the context of Gaussian

linear models, certain discrepancies will lead to contidms &;(y;, [i]) that may be computed based only
on the original model fit.
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