
Testing mark-specific vaccine efficacy with missing
marks

Peter B. GILBERT1 and Yanqing SUN2,3

1University of Washington and Fred Hutchinson Cancer Research Center,
Seattle, WA, USA

2University of North Carolina at Charlotte, Charlotte, NC, USA
3Corresponding author: Yanqing Sun, e-mail: yasun@uncc.edu

Abstract
This article develops hypothesis testing procedures for the stratified mark-specific pro-

portional hazards model in the presence of missing marks. The motivating application is
placebo-controlled preventive human immunodeficiency virus (HIV) vaccine efficacy tri-
als, which have objective to test if the mark-specific relative hazard rate (vaccine versus
placebo) is unity for all mark values, and to test whether it changes with the mark (the mark
is the genetic distance of an infecting HIV sequence to an HIVsequence represented in-
side the tested vaccine). These tests inform on whether the vaccine affects the rate of HIV
infection for any HIV genotype and whether the vaccine effect differs by HIV genotype, re-
spectively, and guide vaccine development. One difficulty with these assessments is that the
mark may be missing from many HIV infected subjects, predominantly due to rapid evolu-
tion of the infecting HIV. The test statistics are constructed based on a two-stage efficient
estimator which utilizes auxiliary predictors of the missing marks. The asymptotic proper-
ties of the testing procedures are investigated. In addition, their finite-sample performances
are investigated in simulations, which verify the double-robustness property under missing
at random marks and demonstrate effectiveness of the predictive auxiliaries to recover effi-
ciency. One of the simulations models the recent landmark trial in Thailand, which was the
first trial to demonstrate partial efficacy of an HIV vaccine.The new methods are applied
to the real data set.

Keywords: Auxiliary marks, competing risks failure time, genetic data, HIV vaccine effi-
cacy trial, augmented inverse probability weighted complete-case estimator, mark-specific
vaccine efficacy

1 Introduction

The primary objective of a preventive HIV vaccine efficacy trial is to assess vaccine efficacy
(V E) to prevent HIV infection, where typicallyV E is defined as one minus the hazard ratio
(vaccine/placebo) of HIV infection diagnosis. However, the great genetic variability of HIV
poses a central challenge to developing a highly efficaciousHIV vaccine. The trial popula-
tion is exposed to many HIV genotypes but the vaccine only contains a few, which represent
particular HIV sequences isolated from infected individuals, and the vaccine is less likely
to protect against HIVs with greater genetic distance from the sequences inside the vaccine
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(Gilbert, Lele, and Vardi, 1999). Moreover, the trial has objectives to assess whether and
how the vaccine impacts the infection rate with any HIV gentoype and whether and how the
vaccine effect varies by HIV genotype; assessment of this objective as been named, ‘sieve
analysis’ (Gilbert, Self, and Ashby, 1998). Gilbert, McKeague and Sun (2008), Sun, Gilbert
and McKeague (2009), and Sun and Gilbert (2012) developed sieve analysis methods using
the competing risks failure time framework (Prentice et al., 1978), with the competing risk
treated not as a discrete categorical variable as usual but rather as a continuous spectrum of
genotypes. In particular, they attached a continuous ‘mark’ variable to the infecting geno-
type that measures the genetic distance of an infecting HIV sequence to a sequence inside
the vaccine. The goal of the sieve analysis methods is evaluation of mark-specific vaccine
efficacy, defined as one minus the mark-specific hazard ratio (vaccine/placebo) of infection.

The Gilbert, McKeague, and Sun (2008) and Sun, Gilbert, and McKeague (2009) meth-
ods assumed no missing mark data in infected subjects, whereas the Sun and Gilbert (2012)
paper allowed missing at random (MAR) missing marks. In practice there are missing
marks, for example in the Vax004 trial 32 of 368 infected subjects had no HIV sequence
data (Gilbert, McKeague, and Sun, 2008), due to drop-out or to inability of the HIV se-
quencing technology to measure the infecting HIV sequence.Sun and Gilbert (2012) is
the only paper on sieve analysis that accommodates missing continuous marks. Sun and
Gilbert (2012) restricted attention to estimation methods, and this article is a sequel that de-
velops corresponding inferential/hypothesis testing methods based on the augmented IPW
estimator.

2 The stratified mark-specific proportional hazards (PH) model

Let T be the failure time,V a continuous mark variable with bounded support[0, 1],
andZ(t) a possibly time-dependentp-dimensional covariate. Under the competing risks
model, the markV is only defined and observable whenT is observed, whereas ifT is
right-censored, the mark is undefined and meaningless. Suppose that the conditional mark-
specific hazard function at timet given the covariate historyZ(s), for s ≤ t, only depends
on the current valueZ(t). Let λ(t, v|z) be the conditional mark-specific hazard function
at (T, V ) = (t, v) given Z(t) = z defined by Sun, Gilbert and McKeague (2009). We
consider the stratified mark-specific proportional hazards(PH) model

λk(t, v|z(t)) = λ0k(t, v)exp
{
β(v)T z(t)

}
, k = 1, . . . ,K, (1)

whereλk(t, v|z(t)) is the conditional mark-specific hazard function given covariatez(t) for
an individual in thekth stratum,λ0k(·, v) is the unspecified baseline hazard function for the
kth stratum,β(v) is thep-dimensional unknown regression coefficient function ofv, and
K is the number of strata. Model (1) allows different baselinefunctions for different strata.
Sun and Gilbert (2012) developed estimation procedures formodel (1) that incorporate
auxiliary covariates and/or auxiliary mark variables thatinform about the probabilityV is
observed and about the distribution ofV .

Arranging the first component ofz(t) to be the treatment (vaccine) group indicator
and lettingβ1(v) be the corresponding regression coefficient, the covariateand stratum
adjusted mark-specific vaccine efficacy equalsVE(v) = 1 − exp(β1(v)). The current
article develops parallel hypothesis testing procedures to access the vaccine efficacyVE(v)
as a function ofv. The two objectives are to assess if the vaccine efficacy everdeviates from
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0 (i.e., testVE(v) = 0) and to assess if the vaccine efficacy changes with the mark (i.e.,
testVE(v) = V E). Gilbert, McKeague, and Sun (2008) provide additional discussion on
the value of testing these hypotheses.

3 Testing mark-specific vaccine efficacy

3.1 Missing data assumptions

The right-censored mark-specific failure time is represented by(X, δ, δV ) andZ(·) is the
covariate process, whereX = min(T,C), T is the failure time of interest,C is the cen-
soring time,δ is the indicator of observed failure andV the mark variable. LetR be the
indicator of whether all possible data are observed for a subject; R = 1 if either δ = 0
(right-censored) or ifδ = 1 andV is observed; andR = 0 otherwise. Auxiliary vari-
ablesA may be helpful for predicting missing marks. Since the mark can only be missing
for failures, supplemental information is potentially useful only for failures, for predicting
missingness and for informing about the distribution of missing marks.

We assume that the censoring timeC is conditionally independent of(T, V ) givenZ(·)
for an individual in thekth stratum. We also assume the markV is MAR (Rubin, 1976); that
is, givenδ = 1 andW = (T,Z(T ), A) of an individual in thekth stratum, the probability
that the markV is missing depends only on the observedW , not on the value ofV ; this
assumption is expressed as

rk(W ) ≡ P (R = 1|δ = 1,W ) = P (R = 1|V, δ = 1,W ). (2)

Let πk(Q) = P (R = 1|Q) whereQ = (δ,W ). Thenπk(Q) = δrk(W ) + (1 − δ). The
MAR assumption (2) also implies thatV is independent ofR givenQ:

ρk(v,W ) ≡ P (V ≤ v|δ = 1,W ) = P (V ≤ v|R = 1, δ = 1,W ). (3)

For an observed valuew of W of an individual in thekth stratum, we writerk(w) =
P (R = 1|δ = 1,W = w) andρk(v,w) = P (V ≤ v|δ = 1,W = w). The stratum-specific
definitions ofrk(w) andρk(v,w) leave the options for the models of the probability of
complete-case and mark distribution to be different for different strata.

Suppose thatτ is the end of the follow-up period. Letnk be the number of subjects in
thekth stratum; the total sample size isn =

∑K
k=1 nk. Let {Xki, Zki(·), δki, Rki, δkiVki,

Aki; i = 1, . . . , nk} be iid replicates of{X,Z(·), δ, R, δV,A} from thekth stratum. The
observed data are denoted by{Oki; i = 1 . . . , nk, k = 1, . . . ,K}, whereOki = {Xki, Zki(·),
Rki, RkiVki, Aki} for δki = 1 andOki = {Xki, Zki(·), Rki = 1} for δki = 0. We assume
that{Oki; i = 1 . . . , nk, k = 1, . . . ,K} are independent for all subjects.

3.2 Hypotheses to test

In the context of the vaccine trial application, letz(t) = (z1, z
T
2 (t))

T , wherez1 is the
treatment assignment (1=vaccine; 0=placebo) andz2 are other related explanatory variables.
Let β(v) = (β1(v), β

T
2 (v))

T , so thatβ1(v) is the coefficient for vaccination status and
β2(v) for other covariates. The mark-specific vaccine efficacyVE(v) can be expressed as
VE(v) = 1−exp(β1(v)). Sun and Gilbert (2012) developed procedures for estimating β(v)
in model (1) and for constructing pointwise confidence intervals forVE(v), for 0 < v < 1.
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Here we are interested in testing the following two sets of hypotheses. Let[a, b] ⊂
(0, 1). The first set of hypotheses is

H10 : VE(v) = 0 for v ∈ [a, b]

vs. H1a : VE(v) 6= 0 for some v (general alternative)

or H1m : VE(v) ≥ 0 with strict inequality for some v (monotone alternative).

The second set of hypotheses is

H20 : VE(v) does not depend on v ∈ [a, b]

vs. H2a : VE(v) depends on v (general alternative)

or H2m : VE(v) decreases as v increases (monotone alternative).

The null hypothesisH10 implies the vaccine affords no protection against any HIV geno-
type. The alternativeH1m indicates that the vaccine provides protection for at leastsome of
the HIV genotypes, whileH1a states that the vaccine provides protection and/or increased
risk for some HIV genotypes. The null hypothesisH20 implies there is no difference in
vaccine protection for different HIV genotypes, measured by their distancesv to an HIV
sequence represented in the vaccine. The ordered alternative H2m states that vaccine effi-
cacy decreases withv and the alternativeH2a indicates that the vaccine efficacy changes
with v. Let β1(v) be the first component ofβ(v). The hypothesesH10 andH20 can be
formulated in terms ofβ1(v).

3.3 Hypothesis testing procedures

The hypothesis testing procedures concerning the HIV vaccine efficacies are developed
based on the augmented inverse probability weighted (AIPW)estimator developed by Sun
and Gilbert (2012). Let̂βaug(v) be the AIPW estimator ofβ(v) for model (1) of Sun and
Gilbert (2012). The estimator of the cumulative functionB(v) =

∫ v
0 β(u) du is given

by B̂aug(v) =
∫ v
0 β̂aug(u) du. The covariate-adjusted vaccine efficacyVE(v) is defined

through the first component ofβ(v). Let B1(v) the first component of the cumulative
coefficient functionB(v). The hypotheses tests concerningVE(v) are constructed based
on the first component̂Baug

1 (v) of the AIPW estimator̂Baug(v).
Let WB(v) = n1/2{B̂aug(v) − B̂aug(a)} − n1/2{B(v) − B(a)} for v ∈ [a, b]. The

distribution ofWB(v), for v ∈ [a, b], can be approximated by its Gaussian multipliers ver-
sionW ∗

B(v), v ∈ [a, b] using the Gaussian multipliers resampling method. LetWB1
(v)

andW ∗
B1

(v) be the first component ofWB(v) andW ∗
B(v), respectively. With the Gaussian

multipliers method, the varianceVar{B̂aug
1 (v) − B̂aug(a)} can be consistently estimated

by V̂ar{B̂aug
1 (v)− B̂aug(a)} = n−1Var∗(W ∗

B1
(v)), whereVar∗(W ∗

B1
(v)) is the first com-

ponent on the diagonal of the conditional covarianceW ∗
B(v) given the observed data.

Testing the null hypothesisH10

Consider the test processQ(1)(v) = n1/2{B̂aug
1 (v) − B̂

aug
1 (a)}, v ∈ [a, b] for testing

H10. ThenQ(1)(v) = WB1
(v)+n1/2{B1(v)−B1(a)}, v ∈ [a, b]. LetG(v) be the limiting

Gaussian process ofWB1
(v), a ≤ v ≤ b, asn → ∞. UnderH10, B1(v) − B1(a) = 0

for v ∈ [a, b]. HenceQ(1)(v)
D

−→G(v), v ∈ [a, b], asn → ∞. UnderH10, the distribution
of Q(1)(v), v ∈ [a, b], can be approximated by the conditional distribution ofW ∗

B1
(v),
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v ∈ [a, b], given the observed data sequence. We propose the followingtest statistics for

testingH10: T
(1)
a1 = supv∈[a,b] |Q

(1)(v)|, T (1)
a2 =

∫ b
a {Q

(1)(v)}2 dVar∗{W ∗
B1

(v)}, T (1)
m1 =

infv∈[a,b]Q
(1)(v) andT (1)

m2 =
∫ b
a Q(1)(v) dVar∗{W ∗

B1
(v)}.

By the continuous mapping theorem,T (1)
a1

D
−→ supv∈[a,b] |G(v)|, T (1)

a2
D
−→

∫ b
a {G(v)}2

dVar{G(v)}, T (1)
m1

D
−→ infv∈[a,b]G(v), andT (1)

m2
D
−→

∫ b
a G(v) dVar{G(v)} underH10 asn →

∞. The test statisticsT (1)
a1 andT (1)

a2 capture general departuresH1a, while the test statistics

T
(1)
m1 andT (1)

m2 are sensitive to the monotone departuresH1m. It is easy to derive that all

the test statisticsT (1)
a1 , T (1)

a2 , T (1)
m1 andT (1)

m2 are consistent against their respective alternative

hypotheses. The distributions ofT (1)
a1 , T (1)

a2 , T (1)
m1 andT (1)

m2 underH10 can be approximated
using the Gaussian multipliers method.

Testing the null hypothesisH20

LetQ(2)(v) = (v−a)−1n1/2{B̂aug
1 (v)− B̂

aug
1 (a)}−(b−a)−1n1/2{B̂aug

1 (b)− B̂
aug
1 (a)}.

Then fora < v ≤ b, Q(2)(v) = Γ(v,WB1
) + n1/2Γ(v,B1), whereΓ(v, F1) = (v −

a)−1{F1(v) − F1(a)} − (b − a)−1{F1(b) − F1(a)} is a transformation of the function
F1(·). We note thatΓ(·, B1) = 0 underH20 andΓ(·, B1) 6= 0 under the alternatives.
This motivates us to considerQ(2)(v) as the test process for testingH20 and the follow-

ing test statistics:T (2)
a1 = supv∈[a′,b] |Q

(2)(v)|, T (2)
a2 =

∫ b
a′{Q

(2)(v)}2 dVar∗{WB1
(v)},

T
(2)
m1 = infv∈[a′,b]Q

(2)(v) andT (2)
m2 =

∫ b
a′ Q

(2)(v) dVar∗{WB1
(v)}, wherea < a′ < b. We

choosea′ > a to avoid zero in the denominator ofQ(2)(v). In practice, one can choosea′

close toa to make use of available data and for the tests to be consistent.
Applying the continuous mapping theorem, we have underH20, T

(2)
a1

D
−→ supv∈[a′,b]

|Γ(v,G)|, T (2)
a2

D
−→

∫ b
a′{Γ(v,G)}2 dVar{G(v)}, T (2)

m1
D
−→ infv∈[a′,b] Γ(v,G), andT (2)

m2
D
−→∫ b

a′ Γ(v,G) dVar{G(v)}, asn → ∞. The testsT (2)
a1 andT (2)

a2 capture general departures

H2a while the testsT (2)
m1 andT (2)

m2 are sensitive to the monotone departureH2m. The test

statisticsT (2)
m1 andT (2)

m2 are expected to be negative whenH2m holds. The distributions of

T
(2)
a1 , T (2)

a2 , T (2)
m1 andT (2)

m2 underH20 can be approximated using the Gaussian multipliers
method.

4 Simulation study and data analysis

Our simulation studies show that all of the tests have satisfactory empirical sizes close to
the nominal level 0.05. The powers of the tests increase withsample size and they are not
overly sensitive to the selected bandwidths. The powers of the tests for testingH10 increase
as the model moves in the direction representing the increased departure from the null hy-
pothesisH10. The powers of the tests for testingH20 increase as the model moves in the
direction representing the increased departure from the null hypothesisH20. Our simulation
studies also show that the tests utilizing the auxiliary marks have higher power than those
without using the auxiliary marks. The powers are expected to increase with the strength
of correlation between the auxiliary marks and the mark of interest. Finally, our simulation
studies reflects the double robustness property of the AIPW estimator. The empirical sizes
are also close to the nominal level 0.05 when one ofrk(w) ( the conditional probability
of the complete-case indicatorRki) andgk(a|t, v, z) (the conditional density ofAki given
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(Tki, Zki, Vki)) is mis-specified. When onlyrk(w) is mis-specified and MAR holds, the em-
pirical powers closely track the corresponding powers under correct model specifications.
The empirical powers are lower than those corresponding powers whengk(a|t, v, z) is mis-
specified or when bothrk(w) andgk(a|t, v, z) are mis-specified. Additional simulations
are conducted to gain insight about the power available for the Thai trial.

The method was applied to the Thai trial. In particular, we assessed how the vaccine ef-
ficacy against subtype E HIV infection depends on weighted Hamming distance (re-scaled
to values between 0 and 1) between the subtype E vaccine-insert sequences and the infect-
ing subtype E HIV. Our method shows a clear significant evidence that the mark-specific
vaccine efficacy is greater than 0 for some marks and declineswith the mark, in the re-
gion v ∈ [0, 0.5]. These analyses suggest that the vaccine protected againstHIVs closely
matched to the vaccine strain HIVs in the monoclonal antibody contact sites, but failed to
protect against HIVs with many mismatches in these sites. These results may guide fu-
ture vaccine research by suggesting to modify future vaccine candidates to include HIV
sequences more closely matched to circulating HIVs in the monoclonal antibody contact
sites.
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