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Abstract

We present several Goodness of Fit tests in the case of observations
of diffusion and inhomogeneous Poisson processes. The tests studied
are similar to the well known Cramèr-von Mises test of classical (i.i.d.)
statistics. We propose linear transformations which make the limit
distributions of statistics (under hypothesis) in all problems quite sim-
ilar. Then this limit distribution is transformed in Brownian bridge
or Wiener process. This allows us to construct the underlying tests
asymptotically distribution free.

Keywords: Cramer-von Mises test, asymptotically distribution free tests,
stochastic processes.

1. Introduction
We consider the construction of the asymptotically distribution free (ADF)
goodness-of-fit (GoF) tests for three models of stochastic processes: small
noise diffusion, ergodic diffusion and inhomogeneous Poisson processes. The
basic hypothesis is supposed to be parametric.

Let us remind some well-known limits in the goodness of fit problems
for the model of i.i.d. observations Xn = (X1, . . . , Xn) with the distribution
function (d.f.) F (x). Suppose that we have to check the hypothesis: H0 :
F (x) = F0 (x), where F0 (x) is some known continuous distribution function.

Introduce the class of tests of asymptotic size α ∈ (0, 1):

Kα =
{
ψn : lim

n→∞
E0ψn = α

}
.

The Cramer-von Mises (C-vM) test Ψ̂n = 1I{∆n>cα} is based on the following
statistics

∆n = n

∫ ∞

−∞

[
F̂n (x)− F0 (x)

]2
dF0 (x) ,

where F̂n (x) is the empirical distribution function (EDF). It is known that

the normalized difference Un (x) =
√
n
(
F̂n (x)− F0 (x)

)
(under hypothesis

H0) converges in distribution to the stochastic process B (F0 (x)) , x ∈ R,
where B (s) , 0 ≤ s ≤ 1 is the Brownian bridge. This convergence provides
the following remarcable property of the underlying statistics (we change
the variables s = F0 (x))

∆n =⇒ ∆ =

∫ 1

0
B (s)2 ds,
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which make the test Ψ̂n asymptotically distribution free (ADF), i.e., its limit
distribution does not depend on the model F0 (·). Due to this convergence
the constant cα can be defined as solution of the equations P (∆ > cα) = α.

If the basic hypothesis is composite parametric then the situation changes
essentially. Suppose now that we have to check the hypothesis H0 :
F (x) = F0 (ϑ, x) , ϑ ∈ Θ where Θ = (α, β), i.e.; the d.f. F (x) belongs to
a parametric family F = {F0 (ϑ, x) , ϑ ∈ Θ}. Introduce the statistics

∆̂n = n

∫ ∞

−∞

[
F̂n (x)− F0

(
ϑ̂n, x

)]2
dF0

(
ϑ̂n, x

)
,

where ϑ̂n is the maximum likelihood estimator (MLE) of the parameter
ϑ. It is known that under conditions of regularity the process Ûn (x) =
√
n
(
F̂n (x)− F0

(
ϑ̂n, x

))
converges to the Gaussian process

Un (x) =⇒ U (t) = B (t)−
∫ 1

0
h (ϑ, s) dB (s)

∫ t

0
h (ϑ, s) ds.

Here s = F0 (ϑ, y) , t = F0 (ϑ, x), h (ϑ, s) = I (ϑ)−1/2 l̇
(
ϑ, F−1

ϑ (s)
)
, l (ϑ, x) =

ln f (ϑ, x) and dot means derivation w.r.t. ϑ.
It is easy to see that the limit distribution of the statistics ∆̂n depends

strongly on the model F0 (·, ·) and on the unknown parameter ϑ. Therefore
the problem of the choice of the threshold becames more difficult. It is
possible to introduce a linear transformation L [·] of Un (x) such that the
limit in distribution of L [Un] (·) is a Wiener process, then the GoF test
constructed on the base of L [Un] (·) can be ADF (Khmaladze (1981)).

We consider the similar problem of the construction of ADF GoF tests
for the mentioned three stochastic processes. We show that (after some
transformations) the basic statistics in all three problems converge to the
same limit process which can be written as follows

U (t) = w (t)−
∫ 1

0
h (s) dw (s)

∫ t

0
h (s) ds,

∫ 1

0
h (s)2 ds = 1,

where w (·) is a Wiener process and h (s) = h (ϑ, t) is some function. Then
we propose linear transformations of the process U (·) into Brownian bridge
and Wiener process. This allow us to construct ADF tests for three models.
2. Results
A. Diffusion process with small noise.

Suppose that the observed process XT = (Xt, 0 ≤ t ≤ T ) is solution of
the stochastic differential equation

dXt = S (Xt) dt+ εσ (Xt) dWt, X0 = x0, 0 ≤ t ≤ T,

where Wt is a Wiener process and the both functions S (x) and σ (x) have
continuous bounded derivatives.
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We have the hypothesis H0, S (x) = S (ϑ, x) , ϑ ∈ Θ = (a, b) , i.e.,
this process has the stochastic differential

dXt = S (ϑ,Xt) dt+ εσ (Xt) dWt, X0 = x0, 0 ≤ t ≤ T.

Here S (ϑ, x) and σ (x) are known strictly positive functions. We have to
test this hypothesis in the asymptotics of small noise (as ε→ 0).

It is well-known that the solution Xt converges (uniformly in t ∈ [0, T ])
to xt = xt (ϑ), solution of the ordinary differential equation

dxt
dt

= S (ϑ, xt) , x0, 0 ≤ t ≤ T.

We suppose that the conditions of regularity are fulfilled. At particularly,
the function S (ϑ, x) > 0. The MLE ϑ̂ε is consistent and asymptotically
normal. Moreover it admits the representation

ϑ̂ε − ϑ

ε
=

1

I (ϑ)

∫ T

0

Ṡ (ϑ, xt)

σ (xt)
dWt + o (1) , I (ϑ) =

∫ T

0

Ṡ (ϑ, xt)
2

σ (xt)
2 dt.

Here and in the sequel dot means derivation w.r.t. ϑ.
Let us introduce the statistics

δε = ε−2

∫ T

0

[
Xt − xt(ϑ̂ε)

]2
dt.

It can be shown that

ε−1
(
Xt − xt(ϑ̂ε)

)
= ε−1 (Xt − xt(ϑ))− ε−1

(
ϑ̂ε − ϑ

)
ẋt (ϑ) + o (1)

= x
(1)
t (ϑ)− I (ϑ)−1

∫ T

0

Ṡ (ϑ, xt)

σ (xt)
dWt ẋt (ϑ) + o (1) .

The O-U process x
(1)
t and the derivative ẋt (ϑ) can be written as follows

x
(1)
t = S (ϑ, xt)

∫ t

0

σ (xs)

S (ϑ, xs)
dWs, ẋt (ϑ) = S (ϑ, xt)

∫ t

0

Ṡ (ϑ, xs)

S (ϑ, xs)
ds.

Hence uε (t) = (εS (ϑ, xt))
−1

(
Xt − xt(ϑ̂ε)

)
converges to the process

u (t) =

∫ t

0

σ (ϑ, xs)

S (ϑ, xs)
dWs − I (ϑ)−1

∫ T

0

Ṡ (ϑ, xs)

σ (xs)
dWs

∫ t

0

Ṡ (ϑ, xs)

S (ϑ, xs)
ds.

The last step is to change the variables

U (s) =

∫ sT

0

S (ϑ, xr)√
Tσ (xr)

du (r)

=
WsT√
T

−
∫ T

0

Ṡ (ϑ, xr)√
I (ϑ) σ (xr)

dWr

∫ sT

0

Ṡ (ϑ, xr)√
T I (ϑ) σ (xr)

dr

= w (s)−
∫ 1

0
h (ϑ, r) dw (r)

∫ s

0
h (ϑ, r) dr,

∫ 1

0
h (ϑ, r)2 dr = 1
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with obvious notation. Hence we obtained the first limit process U (·).
B. Ergodic diffusion processes

We observe a trajectory XT = (Xt, 0 ≤ t ≤ T ) of diffusion process

dXt = S (Xt) dt+ σ (Xt) dWt, X0, 0 ≤ t ≤ T,

where the function σ (x)2 > 0 is known and we have to test the hypothe-
sis: H0 S (x) = S (ϑ, x) , ϑ ∈ Θ, i.e., this process has the stochastic
differential

dXt = S (ϑ,Xt) dt+ σ (Xt) dWt, X0 = x0, 0 ≤ t ≤ T.

We suppose that the conditions of the existence of solution, ergodicity and
regularity in the problem of estimation ϑ are fulfilled. are fulfilled. Let us
denote f̂T (x) local time estimator of the invariant density f (ϑ, x) and study

the normalized difference ζT (ϑ̂T , x) =
√
T
(
f̂T (x)− f(ϑ̂T , x)

)
:

ζT (ϑ̂T , x) =
√
T
(
f̂T (x)− f(ϑ, x)

)
−

√
T
(
ϑ̂T − ϑ

)
ḟ (ϑ, x) + o (1) .

Here ϑ̂T is the maximum likelihood estimator (MLE) of ϑ. Remind that

√
T
(
f̂T (x)− f(ϑ, x)

)
2f(ϑ, x)

=⇒ ζ (ϑ, x) =

∫ ∞

−∞

F (ϑ, y)− 1I{y>x}

σ (y)
√
f (ϑ, y)

dW (y) ,

where W (·) is double-sided Wiener process and

√
T
(
ϑ̂T − ϑ

)
=⇒ 1

I (ϑ)

∫ ∞

−∞

Ṡ (ϑ, y)

σ (y)

√
f (ϑ, y) dW (y) .

Hence ζT

(
ϑ̂T , x

)
⇒ ζ̂ (ϑ, x), where

ζ̂ (ϑ, x) = ζ (ϑ, x)− ḟ (ϑ, x)

∫ ∞

−∞

Ṡ (ϑ, y)
√
f (ϑ, y)

2f (ϑ, x) I (ϑ)σ (y)
dW (y) .

We show that (below s = F (ϑ, x)∫ x

−∞
σ (y) f (ϑ, y) dζ̂ (ϑ, x) = w (s)−

∫ 1

0
h (ϑ, t) dw (t)

∫ s

0
h (ϑ, t) dt,∫ 1

0
h (ϑ, t)2 dt = 1.

Hence we obtain the similar limit process
C. Inhomogeneous Poisson processes

Suppose that we observe a periodic Poisson process Xt, 0 ≤ t ≤ T of
known period τ > 0, T = nτ . The mean and intensity functions we denote as
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Λ (t) and λ (t) respectively. We have to test the hypothesis H0 : Λ (t) =
Λ (ϑ, t) , ϑ ∈ Θ, where Λ (ϑ, ·) is some known function. For simplicity of
exposition we assume that . To construct the GoF test we first define the
empirical mean function on one period

Λ̂n (r) =
1

n

n∑
j=1

[
X(j−1)τ+r −X(j−1)τ

]
, r ∈ [0, τ ]

and study the process

ζn

(
ϑ̂n, r

)
=

√
n
(
Λ̂n (r)− Λ(ϑ̂n, r)

)
=

√
n
(
Λ̂n (r)− Λ(ϑ, r)

)
−

√
n
(
ϑ̂n − ϑ

)
Λ̇ (ϑ, r) + o (1) ,

where ϑ̂n is the MLE. By the central limit theorem we have the convergence

√
n
(
Λ̂n (r)− Λ(ϑ, r)

)
=⇒W (Λ (ϑ, r)) ∼ N (0,Λ (ϑ, r)) ,

where W (·) is a Wiener process. For the MLE we have

√
n
(
ϑ̂n − ϑ

)
=

1

I (ϑ)
√
n

n∑
j=1

∫ τ

0

λ̇ (ϑ, r)

λ (ϑ, r)
d
[
X(j−1)τ+r −X(j−1)τ

]
+ o (1) .

Hence the process un (r) = Λ(ϑ̂n, τ)
−1/2ζn

(
ϑ̂n, r

)
converges to the process

u (r) =
W (Λ (ϑ, r))√

Λ (ϑ, τ)
− 1

I (ϑ)

∫ τ

0

λ̇ (ϑ, v)

λ (ϑ, v)
dW (Λ (ϑ, v))

Λ̇ (ϑ, r)√
Λ (ϑ, τ)

and after the change of variables

s =
Λ(ϑ, v)

Λ (ϑ, τ)
, h (ϑ, s) =

λ̇ (ϑ, v (s))

λ (ϑ, v (s))

√
Λ (ϑ, τ)

I (ϑ)
, w (t) =

W (Λ (ϑ, r))√
Λ (ϑ, τ)

,

for un (r) we obtain the same limit process

U (t) = w (t)−
∫ 1

0
h (ϑ, s) dw (s)

∫ t

0
h (ϑ, s)2 ds,

∫ 1

0
h (ϑ, s)2 ds = 1. (1)

D. Linear transformation We see that the limit basic statistics in all three
problems has the same form (1). We propose two linear transfromations
which allow to construct the ADF tests in these problems. The first one is
to transform U (·) in Brownian bridge.

Introduce the process b (t) =
∫ t
0 h (ϑ, s) dU (s) then

b (t) =

∫ t

0
h (ϑ, s) dw (s)−

∫ 1

0
h (ϑ, s) dw (s)

∫ t

0
h (ϑ, s)2 ds

Proceedings 59th ISI World Statistics Congress, 25-30 August 2013, Hong Kong (Session IPS076) p.762



It is easy to see that b (t) is a Brownian bridge: b (0) = b (1) = 0,

Eb (t) b (s) =

∫ t∧s

0
h (ϑ, v)2 dv −

∫ t

0
h (ϑ, v)2 dv

∫ s

0
h (ϑ, v)2 dv

Therefore if we change the time τ =
∫ t
0 h (ϑ, v)

2 dv, then we have∫ 1

0

(∫ t

0
h (ϑ, s) dU (s)

)2

h (ϑ, t)2 dt =

∫ 1

0
B (τ)2 dτ.

We show that the tests based on the corresponding statistics, where h (ϑ, t)

and U (t) are replaced by their empirical versions, say, h
(
ϑ̂ε,T,n,t

)
are ADF.

The second solution is to transform U (·) in Wiener process (joint work
with Kleptsyna and Liptser). Let us introduce the function q (t, s) (solves
the Fredholm equation) and the process Mt

q (t, s)−
∫ t

0
q (t, v)h (s)h (v) dv = 1, Mt =

∫ t

0
q (t, s) dU (s) .

We have

q (t, s) = 1 +N (t)−1
∫ t

0
h (v)h (s) dv, N (t) =

∫ 1

t
h (s)2 ds > 0.

Then it can be shown thatMt is martingale, which admits the representation

Mt =

∫ t

0
q (s, s) dws, and wt =

∫ t

0
q (s, s)−1 dMs.

with some Wiener process ws. This means that

wt = U (t) +

∫ t

0

1

q (s, s)

∫ s

0
q′t (s, v) dU (v) ds = L (U) (t)

Therefore (in simbolic notation)

δ̂T =

∫ ∞

−∞
L [Uε,T,n] (x)

2 dνε,T,n

(
ϑ̂, x

)
=⇒

∫ 1

0
w2
t dt

with corresponding νT,ε,n

(
ϑ̂, x

)
(as ε→ 0, T → ∞, n→ ∞) and the test

ψ̂T = 1I{δ̂T>cα} ∈ Kα

is ADF. We discuss the relation between our approach and that of Khmal-
adze (1981).
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