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Abstract

Discusses “conditional design effects” of different survey error components on
structural equation model estimates. Estimates effects of clustering, measurement
error, and nonnormality for an application involving reciprocal effects between la-
tent variables and correlated error terms.

Keywords: latent variable, clustering, stratification, weighting, measurement error,
nonnormality.

1 Introduction

Structural equation modeling (SEM) is a popular framework for formulating, fitting, and
testing an variety of models for continuous data in a wide range of fields. Special cases
of SEM include factor analysis, (multivariate) linear regression, path analysis, random
growth curve and other longitudinal models, errors-in-variables models, and mediation
analysis (Bollen, 1989).

This paper discusses a method to evaluate the relative impact of various aspects of
the complex sampling design and data on structural equation model parameter estimates.
Such “conditional design effects” could serve different purposes:

• Given a pilot study, to judge what to improve so as to attain a given standard error
for parameters of interest or given power of a hypothesis test;

• Given candidate weights, to evaluate their effects conditional on other factors.

• To evaluate which “total survey error” components (Groves, 2005) are most rele-
vant to particular multivariate models.

In particular, we consider the effects of stratification, clustering, unequal probabilities of
selection, nonnormality, and measurement error.

The remainder of this paper is structured as follows. Section 2 introduces structural
equation models (SEM) under complex sampling. It is shown how variance estimators
can be defined that omit consideration of each of clustering, stratification, weighting,
nonnormality, and measurement error. Conditional design effects based on these vari-
ance estimates are then defined in section 3. Section 4 presents an application to a
structural equation model for European Social Survey data.

2 SEM under complex sampling

Given a p-vector of observed variables y, let Σ denote its population covariance matrix,
and Sn a sample estimator of it. A structural equation model (SEM) is a covariance
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structure model Σ = Σ(θ) expressing the population covariances Σ as a function of a
parameter vector θ, an often used parameterization of SEM being the “LISREL all-y”
model, consisting of a “structural” model and a “measurement” model

η = Bη + ζ y = Λη + ε, (1)

where η is a vector of latent variables, ζ a vector of latent residuals, and ε is a vector
of measurement errors. In what follows we will focus on applications in which the
“structural” parameters of the model are of primary interest.

Model (1) implies the covariance structure

Σ(θ) = Λ(I −B)−1Φ(I −B)−1
′
Λ′ + Ψ, (2)

where Φ := Var(ζ) and Ψ := Var(ε). The diagonal of the matrix Ψ contains the
measurement error variances, so that the “reliability ratio” (Fuller, 1987) of the j-th
observed variable can then be defined as κj := 1 − Ψjj/Σjj . In other words, without
measurement error (when κj = 1 for all j), Ψ = 0 and Λ = I , in which case the model
reduces to a path analysis with observed variables.

SEM parameter estimates θ̂n are obtained by minimizing a fitting functionF (sn, σ(θ)),
where sn := vech(Sn), σ := vech(Σ), and the vech operator denotes half-vectorization.
An important matrix is the hessian Vn := ∂2F/∂σ∂σ′. In the case of WLS estimation,
Vn consistently estimates a symmetric estimation weight matrix. The most common
choice for F is, however, the normal-theory maximum likelihood (ML) fitting function;
in this case (Fuller, 1987, appendix 4.B), VNT

a
= 2−1D′(Σ−1 ⊗Σ−1)D, where D is the

duplication matrix.
Let x̄ denote a design-consistent estimator of Eπ(x). The estimator x̄ possibly but

not necessarily involves weighting. Define

dhi :=
∑
ct

vech[(yhict − ȳ)(yhict − ȳ)′],

where yhict is the vector associated with the t-th third-stage unit of the c-th second-stage
unit of the i-th PSU of stratum h, with the summation going over all the units within
the i-th PSU (Satorra, 1992, 260). This device essentially redefines the observed data
matrix to d, simplifying the estimation of the (co)variances s to that of estimating the
mean vector sn = d̄n.

The design-consistent estimator of the (co)variances d̄ should be used for sn in the
fitting function. This will then guarantee consistency of the estimator θ̂(sn). It can be
shown that minimizing FML with d̄ as an estimate of sn is equivalent to the “pseudo-
maximum likelihood” (PML) estimator introduced by Skinner et al. (1989, pp. 80–3).

2.1 Variance estimation

The asymptotic variance of the PML parameter estimates is

AVARθ,π(θ̂) = (∆′V∆)−1∆′V ΓV∆(∆′V∆)−1, (3)

where ∆ := ∂F/∂σ(θ), and Γ := VARπ(sn). Equation 3 can be recognized as the
“sandwich” estimator of variance.

The redefinition of sn as the linear estimator d̄n implies that the usual theory of es-
timators for means may be applied to obtain a consistent estimate of Γ := VARπ(sn) =
VARπ(d̄n). Assuming that this variance is finite, variance estimators can be obtained
under various conditions.

Using standard linearization techniques (Wolter, 2007; Skinner et al., 1989, p. 49),
a nonparametric estimate Γ̂NN,complex can be constructed that takes into account each
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of stratification, clustering, and weighting (Muthén and Satorra, 1995). It is equally
possible to selectively disregard each of these factors.

The linearization variance estimator will also take nonnormality into account. To
allow for the evaluation of the effect of nonnormality, a variance estimator is needed that
takes the complex sampling design into account but does assume normality. Oberski
(frth) suggested using

Γ̂NT,complex := Γ̂
(b)
NT + n−1Γ̂

(w)
NT , (4)

where Γ̂
(b)
NT and Γ̂

(w)
NT denote the between-cluster and within-cluster normal-theory co-

variance matrices respectively, and the normal-theory variance estimator of a variance
matrix Sn is Γ̂NT = 2D+(Sn ⊗ Sn)D+′

, with D+ the Moore-Penrose inverse of D.
Finally, the effect of measurement error on standard errors requires evaluation while

still taking complex sampling and nonnormality into account. From the model, it is clear
that if there had been no measurement error, the observed sample covariance would have
estimated Σ−Ψ. Let

y∗ := y′S
− 1

2
n (Sn − Ψ̂n)

1
2 . (5)

Then VAR(y∗) = (Sn − Ψ̂n) (Mair et al., 2012). Therefore, analyzing the transformed
data y∗ as though these had been directly observed will provide consistent point esti-
mates, but standard errors under the (incorrect) assumption that the factor scores were
directly observed without measurement error (Skrondal and Laake, 2001). We use this
fact to evaluate the “design” effect of measurement error.

3 Conditional design effects

We define the “conditional design effect” of a design factor as the variance estimate tak-
ing account of all factors, divided by the variance estimate taking account of all factors
except one. Skinner (1986, pp. 89-91) and Skinner et al. (1989) remark that this quan-
tity is not the same as the well-known Kish (1965) design effect and is more accurately
labeled conditional “misspecification effect”, since it quantifies the effect of not taking
account of one design factor. In practice, sample estimators of design effects and mis-
specification effects tend to correspond, justifying the term “design effect”. We follow
this argument, while stressing the difference with Kish’s design effect.

3.1 Special cases: design effect of weighting or clustering alone

When considering only the influence of weighting, the “design effect” for means is of-
ten taken to equal deffKish := 1 + cv2(w), where cv(w) is the coefficient of variation
of weights (Kish, 1965). Stapleton (2006) suggested using this adjustment in SEM, but
found in simulations that it did not accurately reproduce the true relative variance in-
crease. However, there is a special case in which d2 can be expected to be reasonable
measure of the design effect: namely, when the model is scale-free and unstandardized
regression coefficients and loadings are of interest. In the context of dealing with non-
normality, Satorra and Bentler (1994, p. 410-1) noted that for such parameters it is the
case that AVAR(θ̂n) = c · (∆′V∆)−1, where c is the Satorra-Bentler “scaling correc-
tion factor” (assuming df > 0). Furthermore, c is proportional to VAR(∆′d̄) (p. 409);
and applying standard arguments for design effects of means to ∆′d̄ the design effect
VARNN,complex,(jj)/VARNN,(jj) should be close to deffKish for such parameters.

Skinner (1986, p. 95) showed that, when considering only the effect of clustering on
multivariate parameters, the design effect can be derived as

deff = 1 + (m∗ − 1)ρg, (6)
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Figure 1: Structural model for the Danish ESS data.

where m∗ := n−1
∑

im
2
i and mi is the size of the i-th cluster. Here, ρg is the intr-

acluster correlation of the “individual parameter contributions” to the g-th parameter,
IPC := (∂θ̂/∂sn)d. For structural equation models, it can be shown that (Oberski, frth)
IPC = (∆′V∆)−1∆′V d. Thus, after calculating the IPC’s, the design effect of two-
stage sampling for the g-th parameter can be obtained by calculating the intracluster
correlation coefficient for the g-th column of IPC and applying Equation 6. Oberski
(2013) implements the IPC for structural equation models in the open source SEM li-
brary lavaan (Rosseel et al., 2013).

4 Application to ESS 2008 data

Saris and Gallhofer (2007) analyzed a structural equation model of social and political
trust. Figure 1 shows a simplified version. The model in Figure 1 cannot be estimated
with ordinary linear regression because it contains a reciprocal effect between social and
political trust, which is identified by excluding the regression coefficient from “fear of
crime” to “political trust” and from “political efficacy” to “social trust”.

The variables shown in the model are not observed variables, but latent variables de-
fined as influencing the answers to certain survey questions. For each of these constructs
we can obtain at least two measures from the European Social Survey1 (ESS) round 4,
conducted in 2008t. As an illustration we select only data from Denmark. where respon-
dents were selected with equal inclusion probabilities, which simplifies the discussion
needed below. Composite scores η̂ were calculated by summing each latent variables’
indicators. The reliability coefficients were 0.73, 0.77, 0.57, and 0.64 for “social trust,
“political trust”, “fear of crime” and “efficacy”, respectively.

Fitting the model in Figure 1 to the Danish ESS data yields the structural param-
eter estimates shown in Table 1. Main interest focuses on the regression coefficients,
although other parameters may also be of interest, for instance when calculating stan-
dardized coefficients. The main finding, discussed by Saris and Gallhofer (2007), is that
social trust appears to influence political trust but not the other way around.

Using the methods described above, four standard error estimates were computed,
taking account of:

σ1: Interviewer clustering, nonnormality, and measurement error;

σ2: Nonnormality and measurement error;

σ3: Clustering and measurement error;

σ4: Clustering and nonnormality.
1See http://ess.nsd.uib.no/ess/round4/.

Proceedings 59th ISI World Statistics Congress, 25-30 August 2013, Hong Kong (Session STS010) p.1250



In all cases, the point estimator remained the same. Table 1 shows the square-root design
effect (deft) of clustering, conditional on nonnormality and measurement error defined
as σ1/σ2, and similarly for the other factors.

Table 1 shows that the relative standard error increase due to clustering and nonnor-
mality are very close to each other and around 20%. The similarity of these increases is
partially due to clustering and nonnormality effects’ strong interactions (Oberski, frth).
The relative variance increase due to measurement error is much larger, nearing 95%.

Est. σ1 σ2 σ3 σ4 deftclus deftnn deftmeaserr

pol→ soc 0.303 0.261 0.212 0.210 0.142 1.230 1.242 1.835
soc→ pol 0.771 0.170 0.166 0.160 0.086 1.025 1.068 1.983

fear→ soc -0.678 0.271 0.247 0.238 0.142 1.100 1.140 1.908
eff→ pol 0.510 0.232 0.175 0.168 0.117 1.322 1.383 1.980

Table 1: Point and standard error estimates from fitting the model under different condi-
tions. “deft” columns show relative standard error increase due to each factor, σ1/σk.

In this application, correction for measurement error therefore had the strongest im-
pact on standard errors. This may lead one to wonder whether the mean square error will
be lower without that correction. Table 2 shows that it is not. Calculating bias from the
uncorrected regression coefficients and plugging in the obtained standard error, the table
shows that the

√
MSE is still higher than the standard errors of unbiased estimates (from

Table 1). Under the model assumptions, in spite of the considerable variance increase
due to correction for measurement error, corrected estimates provide the lowest MSE.

θ̂n b̂2 σ̂2 MSE
1
2 σ̂1

pol→ soc 0.44 0.02 0.04 0.26 0.26
soc→ pol 0.83 0.01 0.02 0.17 0.17
fea→ soc -0.31 0.14 0.02 0.39 0.27
eff→ pol 0.28 0.06 0.02 0.27 0.23

Table 2: Square-root mean square error (MSE) without correction for measurement error.

5 Summary

Conditional design effects can be useful measures of the effect of clustering, stratifi-
cation, unequal sampling probabilities, and measurement error on structural equation
model parameters variances. The idea is to evaluate what would happen to standard
errors if a particular “design” factor were not considered. This article discussed an im-
plementation for SEM and methods of overcoming certain difficulties in estimating con-
ditional design effects.

An application to a SEM analysis of Danish data from the 2008 European Social
Survey identified measurement error as the most influential. In spite of the large increase
in parameter uncertainty due to correction for measurement error, however, the mean
square error of corrected parameter estimates still outperformed that of the uncorrected
estimates, a result that emphasizes the importance of corrections for measurement error.
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