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Abstract

Rank estimators are defined as minimizer of a dispersion measure, which includes the
residuals and their rank. The naive application of rank estimators to errors-in-variables
models delivers biased estimators. In the paper it is shown that rank estimates based
on orthogonal residuals are consistent.
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1. Introduction

Rank test statistics have the advantage that the null distribution is independent of the
underlying distribution. This distribution property does not hold for rank estimators,
but there is the hope that they are more robust than least squares estimators. Recently
the application of rank estimation methods to errors-in-variables models got more and
more attention. Sen and Saleh (2010) showed that the naive use of the Theil–Sen es-
timator causes the same bias as the naive least squares estimator. In Zwanzig (2012)
the multivariate linear structural model is considered and a consistent rank estimator
based on Kendall’s tau is derived. Here we are now interested in the functional model. A
correction of the Jaeckel‘s dispersion is proposed for defining a consistent rank estimator.

The paper is organized as follows. First we introduce rank estimates based on or-
thogonal residuals. In Section 3 the limit of a general rank statistic is derived. In Section
4 this result is applied to the simple linear functional model with normal errors and the
consistency of a estimator minimizing this rank statistic is shown.

2. Model

Consider a simple linear functional errors-in-variables model

yi = β0ξi + εi, xi = ξi + δi, i = 1, ..., n, (1)

where the errors are εi ∼ N(0, σ2) and δi ∼ N(0, σ2) mutually independent. The un-
known design points ξi, i = 1, ..., n are centered, fixed and for sufficiently large n exist
positive constants δ and M , such that

n∑
i=1

ξi = 0, 0 < δ ≤ 1

n

n∑
i=1

ξ2i < M,
1

n

n∑
i=1

|ξi|3 < M. (2)

A naive R-estimator is defined by

β̂naive,R ∈ arg min
β
Dnaive (β) , Dnaive(β) =

1

n

n∑
i=1

(yi − βxi)an(Ri),

where Dnaive(β) coincides with Jaeckel’s dispersion in the regression model yi = xiβ0 +
εi. Ri denotes the rank of the vertical residuals yi − βxi, the scores an(i) = ϕ( i

n+1 ) are
generated by a score function ϕ : [0, 1]→ R, which is even, ϕ(t) = −ϕ(1− t), bounded
and has bounded derivatives of first and second order ϕ′, ϕ′′.

A rank estimator which is more adapted to the errors-in-variables model can defined
by using the orthogonal distance
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d2(y, x) = min
ξ

(
|y − βξ|2 + |x− ξ|2

)
=

1

1 + β2
|y − βx|2 .

Define the orthogonal residual d(yi, xi) such that it has the same sign as the vertical
residual yi − βxi, then both residuals have the same rank.

An orthogonal R-estimator is defined by

β̂orth,R ∈ arg min
β
Dorth (β) , Dorth(β) =

1

n

n∑
i=1

d(yi, xi) an(Ri),

where Ri is the rank of yi − βxi. It holds

Dorth(β) =
1√

1 + β2
Dnaive(β). (3)

3. Limit of a General Rank Statistic

Consider the rank statistic

D =
1

n

n∑
j=1

Zjan (Rj) ,

where Rj is the rank of Zj . The random variables Zj , j = 1, ..., n, are independently dis-
tributed with continuous distribution functions Fj . Furthermore we assume

∑n
j=1EZj =

0 and δ ≤ 1
n

∑n
j=1EZ

2
j < M for sufficiently large n.

Theorem 1. Under the assumptions above on the random variables and on the score
function

1.

ED =
1

n

n∑
j=1

E

(
Zjϕ(

µj
n+ 1

)

)
+O(n−1), µj = 1 +

n∑
i=1,i6=j

Fi(Zj).

2. For linear score functions ϕ(t) = at+ b it holds

ED =
a

n(n+ 1)

n∑
j=1

n∑
i=1,i6=j

E(Zj(Fi(Zj)).

Proof : We have

ED =
1

n

n∑
j=1

E (ZjE (an (Rj) | Zj)) . (4)

The rank Rj of Zj can be presented as sum, counting how many members of the sample
Z1, ..., Zn are less or equal to Zj

Rj =

n∑
i=1

u(Zj − Zi), u(x) =

{
1 for x ≥ 0
0 else

. (5)

The conditional distribution of Rj |Zj −1 is a Poisson binomial distribution with pi =
Fi(Zj), i = 1, ..., n, i 6= j and with mean µj − 1 and variance σ2

j

µj = E (Rj | Zj) = 1 +

n∑
i=1,i6=j

Fi(Zj), σ2
j =

n∑
i=1,i6=j

Fi(Zj)(1− Fi(Zj)).

Applying the following Taylor expansion to the scores an(k)

ϕ(
µj
n+ 1

) +
1

n+ 1
(k − µj)ϕ

′
(
µj
n+ 1

) +
1

(n+ 1)
2 (k − µj)2 ϕ

′′

(
µj
n+ 1

+ θj)

Proceedings 59th ISI World Statistics Congress, 25-30 August 2013, Hong Kong (Session STS044) p.1995



we obtain
E (an (Rj) | Zj) = ϕ(

µj
n+ 1

) + rest(1),

with

rest(1) =
M

(n+ 1)
2σ

2
j ≤ O(n−1).

For linear score functions no Taylor expansion is needed and because of
∑
EZj = 0 we

get the second statement.

The variance of D is more complicated to study. An adaption of the proof of The-
orem 3.1 in Hajek (1968) does not work. The monotony properties of the conditional
covariances between rank scores an(Rj) cannot be transformed to terms Zjan(Rj). We
give a direct proof for linear score functions.

Theorem 2. It holds

V ar(
1

n(n+ 1)

n∑
j=1

ZjRj) = O(n−1).

Proof : We have

V ar(

n∑
j=1

ZjRj) =

n∑
j1=1

n∑
j2=1

Cov(Zj1Rj1 , Zj2Rj2).

From (5) it follows

V ar(
∑

ZjRj) =

n∑
j1=1

n∑
j2=1

n∑
i1=1

n∑
i2=1

Cov(Zj1u(Zj1 − Zi1), Zj2u(Zj2 − Zi2).

The sum has n4 terms. But terms, where all indices are different have covariance zero.
Thus V ar(

∑
ZjRj) is of order n3.

Summarizing we obtain

1

n(n+ 1)

n∑
j=1

ZjRj =
1

n(n+ 1)

n∑
j=1

n∑
i=1,i6=j

E(Zj(Fi(Zj)) + op(1). (6)

Note, the convergence is uniformly in β ∈ B, B compact, for continuously parame-
terized distributions Fj = Fj,β .

4. Consistency of the Orthogonal Rank Estimate

Let us apply (6) to Dnaive(β) with Zj = yj − βxj ∼ N((β0 − β)ξj , (1 + β2)σ2) and use
(3).

Theorem 3. Under (1),(2) and for a linear score function ϕ(t) = t and for arbitrary
fixed K and for some constant C

Dorth (β) = Dlead (β) +O(n−1) + rest1(β),

Dlead (β) =
1

2
√
π

(1 +
(β0 − β)

2√
1 + β2σ

1

n

n∑
i=1

ξ2i ) + rest2(β),

where supβ∈B |rest1(β)| = oP (1) , B = {β : |β| ≤ K} and |rest2(β)| < C |β0 − β|3.

Proof : Denote by Φ the distribution function of N(0, 1) and by ϕ the density of N(0, 1).
Note, because we suppose now a linear score function, a denotation confusion cannot
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arise. It holds

EZjFi(Zj) =

∫
z Φ

(
z − (β0 − β)ξi√

1 + β2σ

)
1√

1 + β2σ
ϕ

(
z − (β0 − β)ξj√

1 + β2σ

)
dz.

Transform the variable z =
√

1 + β2σ u+ (β0 − β)ξj and set

∆(j−i) =
(β0 − β) (ξj − ξi)√

1 + β2σ
.

Then EZjFi(Zj) =
√

1 + β2σ A+ (β0 − β)ξj B with

A =

∫
u Φ(u+ ∆(j−i)) ϕ(u)du, B =

∫
Φ(u+ ∆(j−i)) ϕ(u)du.

Applying a Taylor expansion to Φ with ϕ′(u) = −uϕ(u)

Φ(u+ ∆) = Φ(u) + ∆ϕ(u)− 1

2
∆2uϕ(u) +

1

3
∆3ϕ′′(u+ θ)

we obtain

A =

∫
u Φ(u) ϕ(u)du+ ∆(j−i)

∫
u ϕ(u)2du− 1

2
∆2

(j−i)

∫
u2 ϕ(u)2du+ rA

and

B =

∫
Φ(u) ϕ(u)du+ ∆(j−i)

∫
ϕ(u)2du− 1

2
∆2

(j−i)

∫
u ϕ(u)2du+ rB .

By partial integration we have
∫
u Φ(u) ϕ(u)du =

∫
ϕ(u)2du = 1

2
√
π
. Furthermore∫

uϕ(u)2du = 0 and
∫
u2 ϕ(u)2du = 1

4
√
π

and
∫

Φ(u) ϕ(u)du = 1
2 . Hence EZjFi(Zj)

equals√
1 + β2σ

1

2
√
π

(
1− 1

4
∆2

(j−i)

)
+ (β0 − β)ξj

1

2

(
1 +

1√
π

∆(j−i)

)
+ rest2(β).

Now calculate ED = D1 +D2 with

D1 = − 1

n(n+ 1)

n∑
i=1

E(Zi(Fi(Zi))

and

D2 =
1

n2

n∑
j=1

n∑
i=1

E(Zj(Fi(Zj)) +O(n−1).

We have

D1 = − 1

(n+ 1)2
√
π

√
1 + β2σ

and D2 equals

√
1 + β2σ

1

2
√
π

(
1− 1

4
∆2 (β)

)
+

1

n2

n∑
j=1

n∑
i=1

∆(j−i)(β0 − β)ξj + rest2(β) +O(n−1)

with ∆2 (β) = 1
n2

∑n
j=1

∑n
i=1 ∆2

(j−i). Under (2) |rest2(β)| < C |β − β0|3. Using
∑
ξi = 0

we get

∆2 (β) = (β0 − β)
2 1

n2

n∑
j=1

n∑
i=1

(ξj − ξi)2 = 0.
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and
1

n2

n∑
j=1

n∑
i=1

∆(j−i)(β0 − β)ξj = (β0 − β)
2 1

n

n∑
j=1

ξ2j .

Note, under symmetry assumptions the proof works also for location families, but
then we will have another constant as 1

2
√
π
.

We obtain the following result.

Theorem 4. For a rank estimator

β̂orth,R ∈ arg min
β

1√
1 + β2

1

n

n∑
i=1

(yi − xiβ)Ri

where Ri denotes the rank of yi − xiβ, it holds

β̂orth,R → β0 in probability.

Proof : First we show that there exist a K and β̂orth,R ∈ B = {β : |β| ≤ K} . In Jaeckel
(1972) it is shown, that Dnaive(β) is positive, convex and piecewise linear. Thus for
sufficiently large K it exists a positive constant a and

Dorth (β) ≥ a 1√
1 + β2

|β| , for |β| > K.

The function 1√
1+β2

β is monoton increasing for β > K, hence the minimizers of

Dorth (β) are in B.
Second under (2) for β ∈ B and |β − β0| > ε, there exists a constant c0 such for all

ε, 0 < ε < δ√
1+K2

1
C − c0

Dlead (β)−Dlead (β0) ≥ c0ε2.

Because Dorth

(
β̂orth,R

)
≤ Dorth (β0), we have

Dlead

(
β̂orth,R

)
−Dlead (β0)

≤ Dlead

(
β̂orth,R

)
−Dlead (β0) +Dorth (β0)−Dorth

(
β̂orth,R

)
≤ 2 sup

β∈B,|β−β0|>ε
|Dorth (β)−Dlead (β)| .

Hence

P
(∣∣∣β̂orth,R − β0∣∣∣ > ε

)
≤ P

(
sup

β∈B,|β−β0|>ε
|Dorth (β)−Dlead (β)| ≥ c0

2
ε2

)

and Theorem 3 delivers the result.

Note, the leading term of the naive rank estimator does not attain the minimum
at β0, what implies the inconsistency of the naive Theil–Sen estimator. This result was
already shown by Sen and Saleh (2010) by another method.
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